Main Article Content

Abstract


RÉSUMÉ
Introduction. Les effets bénéfiques des antioxydants sur la santé humaine ont été largement démontrés. Aussi, des tests évaluant la capacité antioxydante du sang ont été développés. Objectifs. Mesurer l’activité antioxydante du sang par piégeage du radical libre ABTS+ sur des échantillons de sang total, de globules rouges, de plasma et de sérum. Ainsi, déterminer la fraction du sang qui présente un maximum d’activité antioxydante et qui est la plus adaptée à cette méthode d’évaluation par transfert d’électron Patients et méthodes. Cinq échantillons de sang ont été prélevés sur les auteurs de la publication dont l’âge moyen était de 35 ans. L’activité antiradicalaire a été déterminée par spectrophotométrie UV : Spectrophotomètre V-200 (BOECO, Germany). La lecture de la densité optique a été faite à 734 nm, longueur d’onde d’absorption maximale du cation radicalaire ABTS+. Résultats. Les échantillons cellulaires présentaient une activité anti radicalaire (AAR %) plus grande (sang total : 94,40 ± 0,97 ; culot globulaire : 79,14 ± 3,02) que celles du plasma (76,54 ± 1,92) ou du sérum (72,10 ± 1,71). L’AAR du sang total était supérieur de 18% à celle du plasma et de 22% à celle du sérum. La dilution des échantillons cellulaires représente une situation de stress cellulaire aux fortes dilutions (p=0,008 et p=0,014) rendant erronée la mesure de la capacité antioxydante du sang total. L’AAR du plasma était 5 à 8% supérieure à celle du sérum. Enfin, l’activité antioxydante du plasma (76,25 ± 2,88) et du sérum (70,07 ± 2,02) restait inchangée même après 7 jours au réfrigérateur. Conclusion. Nous pouvons dire que le plasma et le sérum restent les composantes du sang les plus stables et les mieux adaptés pour mesurer la capacité antioxydante totale du sang par piégeage du radical libre ABTS+, avec un léger avantage pour le plasma.
ABSTRACT
Background. The beneficial effects of antioxidants on human health have been widely demonstrated. Also, tests evaluating the antioxidant capacity of the blood have been developed. Our aim was to measure the antioxidant activity of the blood by trapping the ABTS+ free radical on samples of whole blood, red blood cells, plasma and serum. Thus, determine the fraction of the blood which presents a maximum of antioxidant activity and which is the most adapted to this method of evaluation by electron transfer Methods. Five blood samples were taken from the authors of the publication whose average age was 35 years. The anti-radical activity was determined by UV spectrophotometry: Spectrophotometer V-200 (BOECO, Germany). The reading of the optical density was made at 734 nm, wavelength of maximum absorption of the radical cation ABTS+. Results. The cell samples showed a greater antiradical activity (AAR%) (whole blood: 94.40 ± 0.97; red blood cells: 79.14 ± 3.02) than those of the plasma (76.54 ± 1.92 ) or serum (72.10 ± 1.71). The AAR of whole blood was about 18% higher than that of plasma and about 22% higher than that of serum. The dilution of cell samples represents a situation of cell stress at high dilutions (p=0.008 and p=0.014) making the measurement of the antioxidant capacity of whole blood erroneous. Plasma AAR was 5-8% higher than serum AAR. Finally, the antioxidant activity of plasma (76.25 ± 2.88) and serum (70.07 ± 2.02) remained unchanged even after 7 days in the refrigerator. Conclusion. Plasma and serum remain the most stable and best suited blood components to measure the total antioxidant capacity of blood by ABTS+ free radical scavenging, with a slight advantage for plasma.

Article Details

How to Cite
N’Negue ép. Mezui-Mbeng , M., Lendoye, E., Makoyo, O., Bekale, S., Ella Ndong , J., Nguema Edzang, R., & Ngou-Milama , E. (2022). Activité Antioxydante du Sang Total, du Plasma, du Sérum et des Globules Rouges par Piégeage de l’Ion Radicalaire ABTS+. HEALTH SCIENCES AND DISEASE, 23(2 Suppl 1). https://doi.org/10.5281/hsd.v23i2 Suppl 1.3429

References

  1. Sies H., Stahl W., and Sundquist A.R. Antioxidant functions of vitamins: vitamin E and C, beta-carotene, and other carotenoids. Ann. N. Y. Acad. Sci. 1992. 669:7-20
  2. Liebler D.C. The role of metabolism in the anti-oxidant function of vitamin E. Crit. Rev. Food Sci. Nutr. 1993. 23:147-169.
  3. Halliwell B. Free radicals and antioxidants: a personal view. Nutr. Rev. 1994. 52: 253-265.
  4. Sharifian A, Gharavi M, Pasalar P, Aminian O. Effect of extremely low frequency magnetic field on antioxidant activity in plasma and red blood cells in spot welders. Int Arch Occup Environ Health. 2009 Jan; 82(2): 259-66. doi: 10.1007/s00420-008-0332-2.
  5. Kozakiewicz M, Kornatowski M, Krzywińska O, Kędziora-Kornatowska K. Changes in the blood antioxidant defense of advanced age people. Clin Interv Aging. 2019 May 1; 14: 763-771. doi: 10.2147/CIA.S201250.
  6. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000. 408: 239-247.
  7. Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001. 31: 1287-1312.
  8. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015; 4:180-3. doi: 10.1016/j.redox.2015.01.002.
  9. Choi S, Liu X, Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin. 2018 Jul;39(7):1120-1132. doi: 10.1038/aps.2018.25. Epub 2018 Jun 21. PMID: 29926844; PMCID: PMC6289396.
  10. Klaunig JE. Oxidative Stress and Cancer. Curr Pharm Des. 2018; 24(40): 4771-4778. doi: 10.2174/1381612825666190215121712. PMID: 30767733.
  11. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019 Dec;70(6). doi: 10.26402/jpp.2019.6.01. Epub 2020 Feb 19. PMID: 32084643.
  12. Tönnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease. J Alzheimers Dis. 2017;57(4):1105-1121. doi: 10.3233/JAD-161088. PMID: 28059794; PMCID: PMC5409043.
  13. Ialongo C. Preanalytic of total antioxidant capacity assays performed in serum, plasma, urine and saliva. Clin Biochem. 2017 Apr;50(6):356-363. doi: 10.1016/j.clinbiochem.2016.11.037. Epub 2016 Dec 3. PMID: 27919600.
  14. Feng Y, Wang X. Antioxidant therapies for Alzheimer's disease. Oxid Med Cell Longev. 2012;2012:472932. doi: 10.1155/2012/472932. Epub 2012 Jul 25. PMID: 22888398; PMCID: PMC3410354.
  15. Prie BE, Iosif L, Tivig I, Stoian I, Giurcaneanu C. Oxidative stress in androgenetic alopecia. J Med Life. 2016 Jan-Mar;9(1):79-83. PMID: 27974920; PMCID: PMC5152608.
  16. Fischer MA, Gransier TJ, Beckers LM, Bekers O, Bast A, Haenen GR. Determination of the antioxidant capacity in blood. Clin Chem Lab Med. 2005;43(7):735-40. doi: 10.1515/CCLM.2005.125. PMID: 16207134.
  17. Apak R, Güçlü K, Ozyürek M, Bektaşoğlu B, Bener M. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers. Methods Mol Biol. 2010;594:215-39. doi: 10.1007/978-1-60761-411-1_15. PMID: 20072920.
  18. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004 Feb;37(2):112-9. doi: 10.1016/j.clinbiochem.2003.10.014. PMID: 14725941.
  19. Sadowska-Krępa E, Domaszewski P, Pokora I, Żebrowska A, Gdańska A, Podgórski T. Effects of medium-term green tea extract supplementation combined with CrossFit workout on blood antioxidant status and serum brain-derived neurotrophic factor in young men: a pilot study. J Int Soc Sports Nutr. 2019 Mar 21;16(1):13. doi: 10.1186/s12970-019-0280-0. PMID: 30898134; PMCID: PMC6429762.
  20. Abe S, Tanaka Y, Fujise N, Nakamura T, Masunaga H, Nagasawa T, Yagi M. An antioxidative nutrient-rich enteral diet attenuates lethal activity and oxidative stress induced by lipopolysaccharide in mice. JPEN J Parenter Enteral Nutr. 2007 May-Jun;31(3):181-7. doi: 10.1177/0148607107031003181. PMID: 17463142.
  21. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004 Apr;37(4):277-85. doi: 10.1016/j.clinbiochem.2003.11.015. PMID: 15003729.
  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, and Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio.Med. 1999; 26: 1231-1237.
  23. Romay C, Pascual C, Lissi EA. The reaction between ABTS radical cation and antioxidants and its use to evaluate the antioxidant status of serum samples. Braz J Med Biol Res. 1996 Feb;29(2):175-83. PMID: 8731346.
  24. Yu TW, Ong CN. Lag-time measurement of antioxidant capacity using myoglobin and 2, 2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid): rationale, application, and limitation. Anal Biochem. 1999 Nov 15;275(2):217-23. doi: 10.1006/abio.1999.4314. PMID: 10552907.
  25. Gorinstein S, Caspi A, Libman I, Leontowicz H, Leontowicz M, Tashma Z, Katrich E, Jastrzebski Z, Trakhtenberg S. Bioactivity of beer and its influence on human metabolism. Int J Food Sci Nutr. 2007 Mar; 58(2):94-107. doi: 10.1080/09637480601108661. PMID: 17469765.
  26. Martínez-López S, Sarriá B, Mateos R, Bravo-Clemente L. Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. Eur J Nutr. 2019 Mar;58(2):865-878. doi: 10.1007/s00394-018-1726-x. Epub 2018 Jun 1. PMID: 29858625.
  27. N’Negue ép. Mezui-Mbeng, Ella Ndong J. G., Nguema Edzang R. W., Lendoye E., Ngou Milama. Cinétique d’étude de l’activité antioxydante d’un extrait aqueux de calices séchés d’Hibiscussabdariffa par piégeage de l’ion radicalaire ABTS•+. IJAR. 2020; 6 (11): 361-367.
  28. Sadat L, Cakir-Kiefer C, Marie-Andrée N’Negue M.-A., Gaillard J.-L., Girardet J.-M., Miclo L. Isolation and identification of antioxidative peptides from bovine α-lactalbumin. Int Dairy J. 2011. 21(4): 214-221. https://doi.org/10.1016/j.idairyj.2010.11.011.
  29. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond). 1993 Apr;84(4):407-12. doi: 10.1042/cs0840407. PMID: 8482045.
  30. Rice-Evans C, Miller NJ. Total antioxidant status in plasma and body fluids. Methods Enzymol. 1994;234:279-93. doi: 10.1016/0076-6879(94)34095-1. PMID: 7808295.
  31. Schofield D, Braganza JM. Shortcomings of an automated assay for total antioxidant status in biological fluids. Clin Chem. 1996 Oct;42(10):1712-4. PMID: 8855160.
  32. Hopkins FG, Morgan EJ. Some relations between ascorbic acid and glutathione. Biochem J. 1936 Aug;30(8):1446-62. doi: 10.1042/bj0301446. PMID: 16746177; PMCID: PMC1263204.
  33. Packer JE, Slater TF, Willson RL. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature. 1979 Apr 19;278(5706):737-8. doi: 10.1038/278737a0. PMID: 431730.

Most read articles by the same author(s)