Main Article Content

Abstract

RÉSUMÉ
Introduction. La poudre de feuilles de moringa séchées aurait un impact positif dans les variations du taux des antioxydants enzymatiques plasmatiques et érythrocytaires telles que la superoxyde dismutase (SOD), la glutathion peroxydase (GPx) la glutathion réductase (GR) et les antioxydants totaux (TAS) chez les diabétiques de type 2. L’objectif de notre travail était d’étudier les activités antioxydantes des feuilles de Moringa oléifera chez les patients diabétiques de type 2. Méthodologie. Il s’agit d’un essai clinique ouvert non randomisé chez des diabétiques de type 2 qui ont été mis sous régime alimentaire supplémentaire à base de poudre de feuille de Moringa oleifera « Modia », en raison de 10 g par jour et pendant six mois. A l’inclusion avant instauration de toute supplémentation avec le Modia, les patients inclus constituaient le groupe témoin, le deuxième groupe était constitué par les patients qui revenaient au contrôle de trois mois de supplémentation (groupe M3) et le troisième groupe au contrôle de six mois de supplémentation Modia (groupe M6). Cent quarante-quatre (144) patients au total répartis entre : Témoins (48), Groupe M3 (48) et groupe M6 (48) patients. Les paramètres biochimiques mesurés étaient les marqueurs du stress oxydatif (TAS, SOD, GPx, le GR) dans le plasma et érythrocytaire. Les mesures ont été réalisées à l’aide d’un spectrophotomètre UV et visible par les méthodes enzymatiques. Résultats. Les patients de sexe féminin représentaient 75% de l’effectif. L’âge moyen était de 50 ± 11,55 ans (extrêmes 22 à 72 ans). Les statuts oxydatifs des patients ont été améliorées positivement, le TAS a diminué de 1,80±0,78 à 1,56±0,36 UI/L (P=0,00000), la SOD plasmatique a augmenté de 226,90±36,96 à 233,29±17,99 UI/L (P=0,00000), la SOD érythrocytaire de 225,27±39,08 à 1556,04±291,05 UI/L (P=0,00000) la GPX plasmatique (UI/L) de 2177,0±2517,19 à 17249,10±3220,0 (P=0,00865), et la GR plasmatique (UI/L) de 43,62±27,99 à 66,89±16,98 (P=0,00049) ont significativement augmenté après l’instauration du traitement à base de Modia (P-value<0,05). Conclusion. Notre étude a montré que les feuilles du Moringa oleifera ont une capacité anti oxydante sur la stabilisation du système redox des diabétiques de type 2.


ABSTRACT
Introduction. Powder of dry leaves of moringa olifeira have ben reported to influence positively the variations of plasma and red cell antioxidant enzymes such as superoxide dismutase (SOD), glutathion peroxidase (GPx), glutathion reductase (GR) and total antioxidants (TAS) in patients suffering of type 2 diabetes. The aim of our work was to measure the anti-oxidant activity of dried leaves of moringa olifeira on type 2 diabetic patients. Methodology. This was an open non randomized clinical trial that was conducted on type 2 diabetic patients. They were given extracts of dried leaves of moringa olifeira (Modia) for a period of six months, at a dosage of 10 grams per day. Diabetic patients served as their own control before taking the powder. We then created a second group of patients who were those who were examined three months after the introduction of dried leaves of moringa (M3). The third group was those of patients who came for examination six months after the introduction of the moringa leaves (M6). The population study was as follows: for a total of 144 patients, there were 48 patients in the control group, 48 patients in the M3 group and 48 in the M6 group. Our biochemical data of interest were markers of oxidative stress (TAS, SOD, GPx and GR) in the plasma and in the erythrocytes. We used a UV spectrophotometry and enzymatic methods. Results. Female patients represented 75% of the population. The mean age was 50 ± 11.55 years (range: 22 - 72). Over all, oxidative status of patients was significantly improved (P-value<0.05) with the introduction of Modia. TAS decreased from 1.80±0.78 to 1.56±0.36 UI/L (P=0.00000), plasma SOD increased from 226.90±36.96 to 233.29±17.99 UI/L (P=0.00000), red blood cell SOD from 225.27±39.08 to 1556.04±291.05 UI/L (P=0.00000), plasma GPX (UI/L) from 2177.0±2517.19 to 17249.10±3220.0 (P=0.00865), and plasma GR (UI/L) from 43.62±27.99 to 66.89±16.98 (P=0.00049) Conclusion. Our work show that dried leaves of Moringa oleifera have anti-oxidant action on the stabilization of redox system of patients suffering of type 2 diabetes.

Keywords

Diabète type 2, feuille de Moringa oleifera, stress oxydatif.

Article Details

How to Cite
DRAME, B. S. I. ., KONE, A. ., SYLLA, S. D. ., GOITA, Y. ., COULIBALY, D. M. ., SANOGO, R. ., & CISSE, B. M. . (2022). Capacité Anti Oxydante des Feuilles du Moringa Oleifera chez les Diabétiques de Type 2. HEALTH SCIENCES AND DISEASE, 23(3). https://doi.org/10.5281/hsd.v23i3.3500

References

  1. Federation WHOID. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia : report of a WHO/IDF consultation. . Report of a WHO/IDF consultation. 2006.
  2. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4-14.
  3. Auberval N, Dal S, Bietiger W, Pinget M, Jeandidier N, Maillard-Pedracini E, et al. Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet. Diabetol Metab Syndr. 2014;6:130.
  4. Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 2008;118(2):789-800.
  5. Wang PW, Kuo HM, Huang HT, Chang AY, Weng SW, Tai MH, et al. Biphasic response of mitochondrial biogenesis to oxidative stress in visceral fat of diet-induced obesity mice. Antioxid Redox Signal. 2014;20(16):2572-88.
  6. Aderinola TA, Fagbemi TN, Enujiugha VN, Alashi AM, Aluko RE. Amino acid composition and antioxidant properties of Moringa oleifera seed protein isolate and enzymatic hydrolysates. Heliyon. 2018;4(10):e00877.
  7. Gothai S, Muniandy K, Zarin MA, Sean TW, Kumar SS, Munusamy MA, et al. Chemical Composition of Moringa oleifera Ethyl Acetate Fraction and Its Biological Activity in Diabetic Human Dermal Fibroblasts. Pharmacogn Mag. 2017;13(Suppl 3):S462-S9.
  8. Qwele K, Hugo A, Oyedemi SO, Moyo B, Masika PJ, Muchenje V. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay. Meat Sci. 2013;93(3):455-62.
  9. Marrufo T, Nazzaro F, Mancini E, Fratianni F, Coppola R, De Martino L, et al. Chemical composition and biological activity of the essential oil from leaves of Moringa oleifera Lam. cultivated in Mozambique. Molecules. 2013;18(9):10989-1000.
  10. Nauser T, Koppenol WH, Gebicki JM. The kinetics of oxidation of GSH by protein radicals. Biochem J. 2005;392(Pt 3):693-701.
  11. Omotoso GO, Gbadamosi IT, Afolabi TT, Abdulwahab AB, Akinlolu AA. Ameliorative effects of Moringa on cuprizone-induced memory decline in rat model of multiple sclerosis. Anat Cell Biol. 2018;51(2):119-27.
  12. Noureen A, Jabeen F, Tabish TA, Zahoor MK, Ali M, Iqbal R, et al. Ameliorative effects of Moringa oleifera on copper nanoparticle induced toxicity in Cyprinus carpio assessed by histology and oxidative stress markers. Nanotechnology. 2018;29(46):464003.
  13. Abdull Razis AF, Ibrahim MD, Kntayya SB. Health benefits of Moringa oleifera. Asian Pac J Cancer Prev. 2014;15(20):8571-6.
  14. Barichella M, Pezzoli G, Faierman SA, Raspini B, Rimoldi M, Cassani E, et al. Nutritional characterisation of Zambian Moringa oleifera: acceptability and safety of short-term daily supplementation in a group of malnourished girls. Int J Food Sci Nutr. 2018:1-9.
  15. Zhang T, Si B, Deng K, Tu Y, Zhou C, Diao Q. Effects of feeding a Moringa oleifera rachis and twig preparation to dairy cows on their milk production and fatty acid composition, and plasma antioxidants. J Sci Food Agric. 2018;98(2):661-6.
  16. Jung IL. Soluble extract from Moringa oleifera leaves with a new anticancer activity. PLoS One. 2014;9(4):e95492.
  17. Jaffiol C. Le diabète sucré en Afrique : un enjeu de santé publique. Bull Acad Natle Méd. 2011;195(6):1239-54.
  18. OUEDRAOGO M, OUEDRAOGO S.M, BIRBA E, J. DY. COMPLICATIONS AIGUËS DU DIABETE SUCRE AU CENTRE HOSPITALIER NATIONAL YALGADO OUEDRAOGO. Médecine d'Afrique Noire. 2000;47(12):505-7.
  19. Busani Moyo, Patrick J, Masika, Arnold Hugo, Muchenje. V. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African Journal of Biotechnology. 2011;10(60):8.
  20. Jaiswal D, Rai PK, Mehta S, Chatterji S, Shukla S, Rai DK, et al. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac J Trop Med. 2013;6(6):426-32.
  21. Wang F, Bao Y, Shen X, Zengin G, Lyu Y, Xiao J, et al. Niazirin from Moringa oleifera Lam. attenuates high glucose-induced oxidative stress through PKCζ/Nox4 pathway. Phytomedicine. 2021;86:153066.
  22. Kou X, Li B, Olayanju JB, Drake JM, Chen N. Nutraceutical or Pharmacological Potential of Moringa oleifera Lam. Nutrients. 2018;10(3).
  23. Aju BY, Rajalakshmi R, Mini S. Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon. 2019;5(12):e02935.

Most read articles by the same author(s)