Main Article Content

Abstract

RÉSUMÉ
But. Cette étude avait pour but d’établir la différence de caractérisation de la microarchitecture entre le maxillaire et la mandibule. Patients et méthodes. Il s’est agi d’une étude de cohorte monocentrique. Un échantillon osseux était prélevé soit au maxillaire soit à la mandibule avant la pose de l’implant dentaire. Les échantillons osseux étaient acheminés au Laboratoire Sainbioseà la faculté de médecine de St Etienne/France. Les variables de l’étude étaient le sexe, l’âge des patients, les sites de prélèvement osseux (mandibule et maxillaire), les paramètres microarchitecturaux trabéculaires. Les paramètres microarchitecturaux trabéculaires étaient analysés au microscanner  Scanco Viva CT 40 et comparées entre ceux du maxillaire et ceux de la mandibule par le test de Student et le test U de Mann-Whitney. Résultats. Les moyennes des valeurs des paramètres microarchitecturaux étaient globalement plus élevées à la mandibule qu’au maxillaire. La fraction osseuse volumique BV/TV% (p=0,040) et l’index du modèle structurel SMI(p=0,038) avaient une différence statistiquement significative entre la mandibule et le maxillaire. L’analyse de régression multiple n’a pas montré d’association(interaction) entre les paramètres microarchitecturaux trabéculaires et l’âge et le sexe des patients. Conclusion. Cette étude a montré une différence statistiquement significative de la caractérisation de la microarchitecture trabéculaire entre la mandibule et le maxillaire.
ABSTRACT
Purpose. The aim of this study was to establish the difference in the characterization of the microarchitecture between the maxilla and the mandible. Patients and methods. This was a single center cohort study. A bone sample was taken from either the maxilla or the mandible before the placement of the dental implant. The bone samples were sent to the Sainbiose Laboratory at the Faculty of Medicine of St Etienne/France. The study variables were gender, patient age, bone harvesting sites (mandible and maxilla), trabecular microarchitectural parameters. The trabecular microarchitectural parameters were analyzed using the Scanco Viva CT 40 microscanner and compared between those of the maxilla and those of the mandible using the student test and the Mann-Whitney U test. Results. The mean values of the microarchitectural parameters were globally higher in the mandible than in the maxilla. The bone volume fraction BV/TV% (p=0.040) and the structural model index SMI (p=0.038) had a statistically significant difference between the mandible and the maxilla. Multiple regression analysis did not show any association (interaction) between trabecular microarchitectural parameters and patient age and sex. Conclusion. This study showed a statistically significant difference in the characterization of the trabecular microarchitecture between the mandible and the maxilla.

Keywords

Trabecular microarchitecture Mandible Maxilla Bone quality Microarchitecture trabéculaire Mandibule Maxillaire Qualité osseuse

Article Details

How to Cite
Richard Sokolo, Thierry Molimard, Richard Matanda, Florent Songo, Hippolyte Situakibanza, Luc Mokassa, Victoria Haas, Emilie Gadea, & Thierry Thomas. (2022). Caractérisation de la Microarchitecture Trabéculaire Alvéolaire Maxillaire et Mandibulaire. HEALTH SCIENCES AND DISEASE, 23(11). Retrieved from https://hsd-fmsb.org/index.php/hsd/article/view/3974

References

  1. Lekholm U, Zarb GA. Patient selection and preparation. In : Brånemark PI, Zarb GA, Albrektsson T ; Tisue-integrated prostheses : osseointegration in clinical dentistry. Chicago : Quintessence Publ. 1985.
  2. Trisi P, Rao W. Bone clasification : clinical-histomorphometric comparison. Clin Oral Implants Res. 1999 ;10 :1-7.
  3. Misch CE. Density of bone : effet on treatment plans, surgical approach, healing and progressive bone loading. Int J Oral Implant 1990 ;6 :23-31.
  4. Banayan S, Ella B, Rouas P, Coutant J.C, Pothuand L, Lassere J.F, Caix P. Intérêts du procédé TBS dans la détermination de la qualité de l’os en odontologie. Actualités Odonto-Stomatologiques 2010;252:325-37.
  5. Burghardt AJ, Link TM, Majumdur S. High- resolution computed tomography for clinical imaging of bone microstructure. Clin Orthop Relat Res. 2011;469:2179-93.
  6. Bauer JS, Link TM. Advances in osteoporosis imaging. European Journal of Radiology 2009;71:440-9.
  7. Panmekiate S, Ngonphloy N, Charoenkam T, Faruangkorn T, Pauwels R. Comparison of mandibular bone microarchitecture between micro-CT and CBCT images. Dentomaxillofacial Radiology 2015;44(5),20140322.
  8. Wirth AJ, Goldhahn J, Flaig C, Arbenz P, Müller R, van Lenthe GH. Implant stability is affected by local bone microstructural quality. Bone 2011; 49:473-8.
  9. Chappard D, Baslé M-F, Legrand E, Audran M. Trabecular bone microarchitecture: a review. Morphologie 2008;92(292):162-70.
  10. De Oliveira R.C, Leles C.R, Normanha L.M, Lindh C, Ribeiro-Rotta R.F. Assessments of trabecular bone density at implant sites on CT images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(2):231-8.
  11. Traini T, Degidi M, Lezzi G, Artese L, Piattelli A. Comparative evaluation of the peri-implant bone tissue mineral density around unloaded titanium dental implants. J Dent. 2007;35(1):84-92.
  12. Kim YJ, Henkin J. Micro-computed tomography assessment of human alveolar bone: bone density and three-dimensional micro-architecture. Clin Implant Dent Relat Res. 2015;17(2):307-13.
  13. Choël L, Last D, Duboeuf F, Seurin MJ, Issac M, Guillot G. Trabecular alveolar bone microarchitecture in human mandible using high resolution magnetic resonance imaging. Dentomaxillofacial Radiology 2004;33:177-82.
  14. Kim JE, Shin JM, Oh SO, Yi WJ, Heo MS, Lee SS et al. The three dimensionnal microstructure of trabecular bone: analysis of site-specific variation in the human jaw bone. Imaging Sci Dent. 2013;43(4):227-233.
  15. Lee JH, Kim HJ, Yun JH. Three-dimensional microstructure of human alveolar trabecular bone: a micro-computed tomography study. J Periodontal Implant Sci. 2017;47(1):20-9.
  16. Fanuscu M.I; Chang T.L. Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible. Clin Oral Implants Res. 2004; 15(2):213-8.
  17. Blok Y, Gravesteijn F.A, Van Ruijven L.J, Koolstra J.H. Micro-architecture and mineralization of the human alveolar bone obtained with microCT. Archives of Oral Biology 2013;58:621-7.
  18. Monje A, Hsun-Liang Chan, Galindo-Moreno P, Elnayef B, Suarez-Lopez del Amo F, Feng Wang, Hom-lay Wang. Alveolar bone architecture: A systematic review and meta-analysis. J Periodontol. 2015;86(11):1231-48.
  19. Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14:118-127.
  20. Ibrahim N, Parsa A, Hassan B, Van der Stelt P, Wismeijer D. Diagnostic imaging of trabecular bone microstructure for oral implants: a literature review. Dentomaxillofac Radiol. 2013;42(3):20120075.
  21. Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128-2138.
  22. Müller R, Van Campenhout H, Van Damme B, et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 1998;23:59-66.
  23. Ibrahim N, Parsa A, Hassan B, van der Stelt, Aartman IH, Wismeijer D. Accuracy of trabecular bone microstructural measurement at planned dental implant sites using Cone Beam CT datasets. Clinical Oral Implant Research 2013;25(8):941-45.
  24. Parsa A,Ibrahim N, Hassan B, Van der Stelt P, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and ConeBeam CT. Clin Oral Implants Res. 2015;26:1-7.
  25. Van Dessel J, Huang Y, Depypere M, Rubira-Bullen I, Maes F, Jacobs R. A. Comparative evaluation of cone beam CT and micro-CT on trabecular bone structures in the human mandible. Dentomaxillofac Radiol. 2013;42(8):20130145.
  26. Kim JE, Yi WJ, Heo MS, Lee SS, Choi SC, Huh KH. Three- dimensional evaluation of human jaw bone microarchitecture: correlation between the microarchitectural parameters of cone beam computed tomography and micro-computer tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120(6):762-70.
  27. Liang X, Zhang Z, Gu J, Wang Z, Vandenberghe B, Jacobs R, et al. Comparison of micro- CT and cone Beam CT on the feasibility of assesing trabecular structures in mandibular condyle. Dentomaxillofac Radiol. 2017;46(5):20160435.
  28. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H,Meunier PJ, Ott SM, Recker RR. Bone Histomorphometry: Standardization of Nomenclature, Symbols, and Units. Journal of Bone and Mineral Research 1987;2(6):595-610.
  29. Hildebrand T, Rüegsegger P. Qantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin. 1997;1:15-23.
  30. Ersanli S, Karabuda C, Beck F, Leblebicioglu B. Resonance frequency analysis of one-stage dental implant stability during osseointegration period. J Periodontol. 2005;76:1066-1071.
  31. Balleri P, Cozzolino A, Ghelli L, Momicchioli G, Varriale A. Stability measurements of osseointegrated implants using Osstell in partially edentulous jaws after 1 year of loading: a pilot study. Clin Implant Dent Relat Res. 2002;4:128-132.
  32. Bischof M, Nedir R, Abi Najm S, Szmukler-Moncler S, Samson J. A 5-year life table analysis on wide neck ITI implants with prosthetic evaluation and radiographic analysis: results from a private practice. Clin Oral Implants Res. 2006;17:512-520