Profil Lipoprotéique et Risque Athérogène chez les Drépanocytaires Majeurs au CHU de Cocody
Lipid Profile and Atherogenic Risk of Major Sickle Cell Disease Patients in Abidjan
DOI :
https://doi.org/10.5281/hra.v2i8.5939Mots-clés :
Drépanocytose, lipides, CRP, Risque athérogène, CocodyRésumé
RESUME
Introduction. Les formes majeures de drépanocytose sont une source de perturbation des paramètres lipidiques. Cette perturbation est impliquée dans l’apparition de nombreuses maladies cardiovasculaires telles que les accidents vasculaires cérébraux. Cette étude avait pour but d’établir la relation entre les formes majeures de la drépanocytaire, le risque athérogène et l’état inflammatoire des sujets. Méthodologie. Il s’agit d’une étude transversale à visé analytique qui s’est déroulée dans les services d’hématologie du CHU de Cocody et dans le laboratoire de biochimie de l’UFR des Sciences Médicales d’Abidjan portant sur les sujets drépanocytaires majeurs et de sujets apparemment sains admis au CHU de Cocody pendant la période de l’étude. Résultats. Nous avons recruté un total de 57 sujets drépanocytaires (SS, SC, Sβ0,Sβ+) et 44 sujets apparemment sains sur la base d’une électrophorèse de l’hémoglobine. L’âge moyen des sujets drépanocytaires était de 17,77 ans avec des extrêmes de 2 et 67 ans. On notait une prédominance féminine avec un sex- ratio de 1,48. Les cholestérolémies totales moyennes des drépanocytaires SS et SC étaient plus faibles comparativement à celles des drépanocytaires Sβ0, Sβ+ et de la population témoin avec une différence statistiquement significative (p= 0,0031). Les triglycéridémies moyennes des drépanocytaires (SS et SC) étaient plus basses en comparaison à celles des témoins et des drépanocytaires Sβ0 et Sβ+. Les valeurs moyennes de l’indice d’athérogénicité des sujets drépanocytaires étaient élevées que chez les témoins avec une différence statistiquement significative (p = 0,001). les drépanocytaires avaient des concentrations de CRP significativement plus élevée avec p = 0,0015. Conclusion. Chez les sujets drépanocytaires, les valeurs augmentées de l’indice d’athérogénicité, des triglycérides, de la CRP et la baisse de la concentration du cholestérol HDL expliqueraient un risque athérogène plus élevé. Il est important d’introduire le bilan lipidique dans le suivi du patient drépanocytaire.
ABSTRACT
Introduction. The major forms of sickle cell disease are a source of disruption to lipid parameters. This disruption is implicated in the development of many cardiovascular diseases such as strokes. The aim of this study was to establish the relationship between the major forms of sickle cell disease, atherogenic risk, and the inflammatory state of subjects. Methodology. This was a cross-sectional analytical study conducted in the hematology departments of the Cocody University Hospital and the biochemistry laboratory of the Faculty of Medical Sciences in Abidjan, focusing on major sickle cell subjects and apparently healthy subjects admitted to the Cocody University Hospital during the study period. Results. A total of 57 sickle cell subjects (SS, SC, Sβ0, Sβ+) and 44 apparently healthy subjects were recruited based on hemoglobin electrophoresis. The average age of sickle cell subjects was 17.77 years with a range of 2 to 67 years. There was a female predominance with a sex ratio of 1.48. The mean total cholesterol levels of SS and SC sickle cell subjects were lower compared to those of Sβ0, Sβ+ sickle cell subjects and the control population with a statistically significant difference (p=0.0031). The mean triglyceride levels of sickle cell subjects (SS and SC) were lower compared to controls and Sβ0 and Sβ+ sickle cell subjects. The mean atherogenicity index values of sickle cell subjects were higher than in controls with a statistically significant difference (p=0.001). Sickle cell subjects had significantly higher CRP concentrations with p=0.0015. Conclusion. In sickle cell subjects, increased values of the atherogenicity index, triglycerides, CRP, and decreased HDL cholesterol levels would explain a higher atherogenic risk. It is important to include lipid profile assessment in the treatmentent of sickle cell disease.
Références
Zorca S, Freeman L, Hildesheim M, Allen D, Remaley AT, Taylor JG et al. Lipid levels in sickle-cell disease associated with haemolytic severity, vascular dysfunction and pulmonary hypertension. Br J Haematol 2010; 149(3):436-45
Lalanne-Mistrih ML, Connes P, Lamarre Y, Lemonne N, Hardy-Dessources MD, Tarer V et al. Lipid profiles in French West Indies sickle cell disease cohorts, and their general population. Lipids Health Dis. 2018 5;17(1):38
Alsultan AI, Seif MA, Amin TT, Naboli M, Alsuliman AM. Relationship between oxidative stress, ferritin and insulin resistance in sickle cell disease. Eur Rev Med Pharmacol Sci. 2010;14(6):527-38
Oztas YE, Sabuncuoglu S, Unal S, Ozgunes H, Ozgunes N. Hypocholesterolemia is associated negatively with hemolysate lipid peroxidation in sickle cell anemia patients. Clin Exp Med 2011;11(3):195-8
Monde AA, Kouamé-Koutouan A, Tiahou GG, Camara CM, Yapo AA, Djessou SP, et al. Profil lipidoprotéique l, isotopique et risque athérogène dans la drépanocytose en Côte d’Ivoire. Med Nucl 2010 ; 34 : 17-21.
Ould Amar AK, Gibert AP, Darmon O, Besse P, Cenac A, Césaire R. Hémoglobinopathies hétérozygotes AS et risque coronaire. Archives des maladies du cœur et des vaisseaux 1999 ; 92 : 1727-32
Galacteros F. Drépanocytose. Encyclopédie Orphanet 2000.Disponible sur www.orpha.net./data/patho/FR/fr-drepanocy.pdf
Gladwin MT, Vichinsky E. Pulmonary complications of sickle cell disease. N Engl J Med 2008; 359(21):2254-65
Rahimi Z, Merat A, Haghshenass M, Madani H, Rezaei M, Nagel RL. Plasma lipids in Iranians with sickle cell disease: hypocholesterolemia in sickle cell anemia and increase of HDL-cholesterol in sickle cell trait. Clin Chim Acta 2006 ;365(1-2):217-20
Gueye Tall F, Ndour EHM, Cissé F, Gueye PM, Ndiaye Diallo R, Diatta A, et al. Perturbations de paramètres lipidiques au cours de la drépanocytose. Rev. Cames Santé 2014 ; 2 (2): 35-41
Monnet PD, Kane F, Konan-Waidhet D, Akpona S, Kora J, Diafouka F, et al. Évaluation du risque athérogène chez le drépanocytaire homozygote. Bull Soc Path Ex 1996 ; 89 : 278-81
Friedewald WT, Levy RI, Fredrickson DS. Estimation of concentration of lowdensity lipoprotein cholesterol in plasma without use of ultracentrifuge. Clin Chem 1972;18 (6): 499- 502
McMahon M, Grossman J, FitzGerald J, Dahlin-Lee E, Wallace DJ, Thong BY et al. Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 2006; 54(8):2541-9.
Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res. 2006; 98(11):1352-64
Shores J, Peterson J, VanderJagt D, Glew RH. Reduced cholesterol levels in African-American adults with sickle cell disease. J Natl Med Assoc.2003 ;95(9):813-7
Akinlade KS, Adewale CO, Rahamon SK, Fasola FA, Olaniyi JA, Atere AD. Defective lipid metabolism in sickle cell anaemia subjects in vaso-occlusive crisis. Niger Med J. 2014;55(5):428-31.
VanderJagt DJ, Shores J, Okorodudu A, Okolo SN, Glew RH. Hypocholesterolemia in Nigerian children with sickle cell disease. J Trop Pediatr. 2002;48(3):156-61.
Rahimi Z, Merat A, Haghshenass M, Madani H, Rezaei M, Nagel RL. Plasma lipids in Iranians with sickle cell disease: hypocholesterolemia in sickle cell anemia and increase of HDL-cholesterol in sickle cell trait. Clin Chim Acta. 2006; 365(1-2):217-20.
Belcher JD, Marker PH, Geiger P, Girotti AW, Steinberg MH, Hebbel RP et al. Low-density lipoprotein susceptibility to oxidation and cytotoxicity to endothelium in sickle cell anemia. J Lab Clin Med 1999;133(6):605-12.
Diatta A, Cissé F, Guèye TF, Diallo F, Touré F, Sarr G et al. Serum lipids and oxidized low density lipoprotein levels in sickle cell disease: Assessment and pathobiological significance. African Journal of Biochemistry Research 2014; 8(2):39-42
Aleluia MM, Da Guarda CC, Santiago RP, Fonseca TC, Neves FI, De Souza RQ et al. Association of classical markers and establishment of the dyslipidemic sub-phenotype of sickle cell anemia. Lipids Health Dis 2017; 16(1):74.
Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis. 2002; 161(1):1-16
Seixas MO, Rocha LC, Carvalho MB, Menezes JF, Lyra IM, Nascimento VM et al. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease. Lipids Health Dis 2010; 27; 9:91
Mokondjimobe E, Guie G, Bongo N, Gombet TAR , Elira-Dockekia A, Parra HJ. Profil des lipides plasmatiques chez les drépanocytaires homozygotes et hétérozygotes congolais. Ann. Univ. M. NGOUABI 2010; 11 (5): 37-41
Bhatkulkar P, Khare R, Meshram AW, Dhok A. Status of Oxidative Stress and Lipid Profile in Patients of Sickle Cell Anemia. Int J Health Sci Res 2015; 5(3):189-193.
Samarah F, Srour MA, Dumaidi K. Plasma Lipids and Lipoproteins in Sickle Cell Disease Patients in the Northern West Bank, Palestine. Biomed Res Int 2021 ;2021:6640956.
Hebbel RP, Eaton JW, Balasingam M, Steinberg MH. Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest. 1982; 70(6):1253-9
Rice-Evans C, Omorphos SC, Baysal E. Sickle cell membranes and oxidative damage. Biochem J. 1986;237(1):265-9.
29 .Diallo I; Monnet D; Sangare A; Yapo, AE. Intérêt clinique du dosage de la protéine C-réactive de l'α1-glycoproteine acide et de la transferrine au cours de la drépanocytose homozygote. Publications Médicales Africaines 1993; 26(124): 7-11.
30 .Benjamin LJ, Rouaud C. Altérations biochimiques et cellulaires des marqueurs de crise de l'anémie falciforme et des moniteurs thérapeutiques. Inserm 1985;141, 451-454.
Kato GJ, Hsieh M, Machado R, Taylor J 6th, Little J, Butman JA et al. Cerebrovascular disease associated with sickle cell pulmonary hypertension. Am J Hematol 2006; 81(7):503-10.
Morris CR. Mechanisms of vasculopathy in sickle cell disease and thalassemia. Hematology Am Soc Hematol Educ Program 2008:177-85.
Hyka N, Dayer JM, Modoux C, Kohno T, Edwards CK, Roux-Lombard P et al. Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 2001;97(8):2381-9.
Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R, Riella M, Heimbürger O, Cederholm T, Girndt M. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia--the good, the bad, and the ugly. Kidney Int 2005 ; 67(4):1216-33
Bentz MH, Magnette J. Hypocholestérolémie au cours de la phase aiguë de la réaction inflammatoire d’origine infectieuse. A propos de 120 cas. Rev Méd Interne 1998 ; 19 : 168-72
Téléchargements
Publié-e
Comment citer
Numéro
Rubrique
Licence
(c) Tous droits réservés Vanie BFG, Kouame BGM, Niamke AGG, Koudou CC, Yapo ACB, Lohore KC, Allou AAA 2024
Cette œuvre est sous licence Creative Commons Attribution - Pas de Modification 4.0 International.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work