Main Article Content

Abstract

RÉSUMÉ
Introduction. La glycogénose de type 1 (GSD1) est une maladie des hypoglycémies récurrentes par déficit de Glucose-6-Phosphatase (G6Pase. Elle entraine un dysfonctionnement du système nerveux central (SNC) et des troubles neurocomportementaux. La triade, hypoglycémie de jeûne court -hyperlactacidémie – hépatomégalie, fait le diagnostic avant la détection d’anomalie du gène de G6Pase. Les polymères de glucose contenus dans le maïs (Maïzena ®) préviennent l’hypoglycémie et les troubles neurocognitifs. L’objectif de notre étude était de détecter les caractéristiques clinicobiologiques de la GSD1. Matériels et méthodes. Nous avons mené une étude transversale multicentrique d’avril 2016 à mai 2018 dans les institutions de réadaptation neurocomportementale de Kinshasa. Étaient inclus les filles et garçons de 4 à 19 ans sans antécédents de traumatisme crânien et / ou de méningite ou d'encéphalite. Le test statistique de Wilcoxon-Mann Whitney a été utilisé grâce au logiciel Minitab 18 avec un seuil p inférieur à 0,05. Résultats. Cent vingt-et-un enfants étaient éligibles, dont 74 garçons et 47 filles (sex-ratio = 1,55). Leur âge moyen était de 9,36 ans ± 3,22 (4-19 ans) ; le premier quartile à 7 et le troisième quartile à 11,8.ans. Les signes de GSD1 étaient corrélés avec les atteintes neurologiques de la manière suivante : l’hyperlactacidémie était corrélée au retard cognitif, aux troubles de la mémoire, à l’hépatomégalie, aux repas rapprochés ; l’hypoglycémie était corrélée au retard cognitif, au trouble de mémoire, à l’hépatomégalie et aux repas rapprochés. Conclusion. La triade clinicobiologique de la GSD1 1 a été retrouvée chez les enfants atteints de troubles neurocomportementaux, ce qui suggère la participation de GSD1.
ABSTRACT
Introduction. Type 1 glycogenosis, disease of recurrent hypoglycemia is due to Glucose-6-Phosphatase (G6Pase) deficiency. It leads to central nervous system (CNS) dysfunction and neurobehavioral disorders. The triad, short-fasting hypoglycemia -hyperlactacidemia – hepatomegaly is a clue to the diagnosis before detection of an abnormality in the G6Pase gene. The glucose polymers contained in corn (Maïzena ®) prevent hypoglycemia and neurocognitive disorders. The aim of our study was to detect the clinicobiological features of GSD1. Materials and methods. After authorization of the ethics committee, a multicenter cross-sectional study was carried out from April 2016 to May 2018 in the neurobehavioral rehabilitation institutions of Kinshasa. We included girls and boys aged 4 to 19 years, without a history of head trauma and / or meningitis or encephalitis. The Wilcoxon-Mann Whitney statistical test was used using Minitab 18 software with a p-threshold less than 0.05. Results. One hundred and twenty-one children were studied, 74 boys and 47 girls (sex ratio 1.55). The mean age was 9.36 years ± 3.22 (4-19 years); the first quartile at 7 and the third quartile at 11.8. years. Signs of GSD1 were correlated with neurological damage as follows: hyperlactacidemia correlated with cognitive delay, memory impairment, hepatomegaly, close meals; hypoglycemia was correlated with cognitive delay, memory impairment, hepatomegaly, and close meals. Conclusion. The clinicobiological triad of GSD1 1 is found in children with neurobehavioral disorders in Kinshasa, which suggests the participation of GSD1.

Article Details

How to Cite
Mangyanda Kinkembo, L., Célestin Nsibu, N., Bifu, C., Matondo, R., Mbambi, S., & Mbuila, C. (2020). Dépistage des Signes Cliniques et Biologiques de la Glycogénose de Type 1 chez les Enfants Atteints de Troubles Neurocomportementaux à Kinshasa. HEALTH SCIENCES AND DISEASE, 21(12). https://doi.org/10.5281/hsd.v21i12.2421

References

  1. Press. Role of the hippocampus in the formation and the conservation of the memory. Nature. 1989; 341 :54-57.
  2. Verloes A. Genetic and autism: chromosomes and autism. Scientific bulletin of the arapi. 2010. Spring: 25.
  3. Emery JL, Howat AC, Variend S, Vawter GF. Investigating of inborn errors of metabolism in unexpected infant deaths. Lancet .1988; ii:29-30.
  4. Burchell A, Bell JE, Hume R, Busuttil A. Hepatic microsomal glucose 6 phosphatase system and sudden infant death syndrome. Lancet 1989; ii: 291-294.
  5. Mai-Anh Nay, Bretagnol A, Boulain T, Auzou P. Lesions to the cerebral imagery after prolonged stern hypoglycemia. Rev Neuro. 2016; 172 (Suppl 1): A129-A130.
  6. Rake JP, Visser G, Labrune P, Leonardo JV, Ulrich K, Smit GP. Glycogen storage disease Type 1: diagnosis, management, clinical runs and outcome. Results of European study one Glycogen Storage disease Marks 1 (ESGSD 1). Eur J Pediatr 2002;161 (suppl 1): S20-S34.
  7. Melis D, Parent G, Della Casa R, Sibilio M, Romano A, Di Room F et al. Brain tamping in glycogen storage disease type 1. J pediatr. 2004; 144: 637-642.
  8. Lachérade JC. the consequences of the hypoglycemia. Réan. 2008; 17 :437-441.
  9. Demographic and Health Survey in the Democratic Republic of Congo 2013-2014. Rockville, Maryland, USA: MPSMRM, MSP and ICF International.
  10. Nsibu NC. Clinical and biochemical features in a Congolese infant with a congenital disorder of glycosylation (CDG)-IIx. Eur J Pediatr Neurol. 2008; 12:257-261.
  11. Sturiale L. Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics. 2008; 8: 3822-3832.
  12. Linkenhoker BA, Knudsen EI. Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 2002; 419: 293-296.
  13. Paquette V, Lévesque J, Mansour B et al. Change the mind and you change the brain: effects of cognitive-behavioral therapy on the neural correlated of spider phobia. Neuroimage. 2003; 18: 401-409.
  14. Bourgeois JP. Synaptogenesis, heterochrony, and epigenesis in the mammalian neocortex. Acta Paediatr. 1997; 422 (suppl): 27-33.
  15. THAT N, Luciana M. Synaptogenesis in the neocortex of the newborn. 2001. Cambridge, Massachusetts, GETS Press. eds. Handbook of developmental cognitive neuroscience: 23-34.
  16. Changeux JP. The development of the cerebral connectivity: ultimate stage of the individuation. 2003. Paris. Edition Odile Jacob: 93-115.
  17. Goldberg JL. Intrinsic neuronal regulation of axon and dendrite growth. Curr Opin Neurobiol. 2004; 14: 551-557.
  18. Auer RN, Kalimo H, Olsson Y, Siesjo BK. The temporal evolution of hypoglycemic brain damage I. light and electron-microscopic findings in the rat cerebral cortex. Acta Neuropathol 1985; 67:13-24.
  19. Singh P, Kaur G. Impact of hypoglycemia and diabetes one CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem. 2004; 260:153-159.
  20. Suh SW, Hamby AM, Swanson RA. Hypoglycemia, brain energetic, and hypoglycemic neuronal death. Glia 2007; 55: 1280-1286.
  21. Michon CC, Gargiulo M, Hahn-Barma V, Petit F, Nadaj-Pakleza A, Herson A, Eymard B, Labrune P, Laforet P. -Cognitive profile of patients with glycogen storage disease type III: a clinical description of seven cases. J Inherit Metab Dis. 2015 May;38(3):573-80.
  22. Shelly LL, Lei KJ et al: Isolation of the gene for murine glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J Biol Chem 1993; 268 :21482-21485.
  23. Kure S, Hou DC, Suzuki Y, Yamagishi A, Hiratsuka M, Fukuda T, Sugie H, Kondo N, Matsubara Y, Narisawa K. Glycogen storage disease type Ib without neutropenia. JPediatr. 2000; 137 :253–256.doi : 10.1067/mpd.2000.107472. [PubMed] [CrossRef] [Google Scholar.