Main Article Content

Abstract


ABSTRACT
Objective. To estimate the concordance rate and find the characteristics of discordant patients using the two versions of the WHO/ISH prediction charts in a population of outpatients in the University Hospital Gabriel Touré (UH-GT). Methodology. This study involved outpatients for whom cholesterol data was available. We use WHO/ISH Afro-D prediction charts with and without cholesterol to assess the 10-years cardiovascular risk score. IBM SPSS software was used for uni- and bivaluate analyses and Cohen’s test for the reliability of both charts. Results. The concordance rate for both cholesterol free and available WHO/ISH risk scores was 74.1%. Patients showing discordant risk scores were older (p=0.012) and had higher systolic, diastolic pressures, respectively of 163.26 vs 137.54 mmHg with p<0.0001, 92.50 versus 85.67 mmHg with p=0.001. The agreement between the two WHO/ISH prediction tools was fair with a κ of 0.334 (95% CI, 0.316 to 0.351), p < 0.001.. Conclusion. The discordance rate was about one-fourth and only age and pressure values were higher in patients with discordant scores. Further large sample data are needed to confirm these findings, particularly in the setting of low resources. Identifying patients who will benefit from lipid checking is essential and could aid to save resources and their allocation.


RÉSUMÉ
Objectif. Estimer le taux de concordance et retrouver les caractéristiques des patients discordants à l'aide des deux versions des outils de prédiction OMS/ISH du risque cardiovasculaire (RCV) dans une population de patients ambulatoires du CHU Gabriel Touré (UH-GT). Méthodes. Cette étude portait sur des patients ambulatoires pour lesquels des données sur le cholestérol étaient disponibles. Nous avons utilisé les tableaux de prédiction OMS/ISH du RCV pour la zone Afro-D avec et sans cholestérol afin d’évaluer le score de risque cardiovasculaire à 10 ans. Le logiciel IBM SPSS a été utilisé pour les analyses uni- et bivariées ainsi qu'un test de Cohen pour l’accord entre les deux outils. Résultats. Le taux de concordance entre les scores de risque OMS/ISH avec ou sans cholestérol était de 74,1 %. Les patients présentant des scores de risque discordants étaient plus âgés (p=0,012) et avaient des pressions systolique et diastolique plus élevées, respectivement de 163,26 contre 137,54 mm Hg avec p<0,0001, 92,50 contre 85,67 mm Hg avec p=0,001. L’accord entre les deux outils de prédiction de l'OMS/ISH était passable avec un de 0,334 (IC à 95 %, 0,316 à 0,351), p < 0,001. Conclusion. Le taux de discordance était d'environ un quart et seules les valeurs d'âge et de pression étaient plus élevées chez les patients avec des scores discordants. Des données issues d'échantillons plus larges sont nécessaires pour confirmer ces résultats, en particulier dans le contexte de faibles ressources. L'identification des patients qui bénéficieront d'un bilan lipidique est essentielle et pourrait contribuer à économiser les ressources et leur affectation.

Keywords

risk scores cardiology prediction charts Mali

Article Details

Author Biographies

Youssouf Camara

University Hospital Kati, Cardiology (Mali)

Sonfo Boubacar

University Hospital Kati, Cardiology (Mali)

How to Cite
Ba, H. O., Camara, Y. ., Sangaré, I. ., Boubacar, S. ., Coulibaly, S. ., Sidibé, N. ., Cissoko, Y. ., Sidibé, S. ., Konaté, M. ., Kéita, M. A. ., Thiam, D. C. ., Touré, M. ., Diakité, M. ., Menta, I. ., & Diall, I. B. . (2021). WHO/ISH Cardiovascular Risk Assessment Tools : Concordance Rate in a Hospital Based Malian Population: Outils d’évaluation du risque cardiovasculaire OMS/ISH : taux de concordance dans une population hospitalière malienne. HEALTH SCIENCES AND DISEASE, 22(8). Retrieved from https://hsd-fmsb.org/index.php/hsd/article/view/2784

References

  1. Références
  2. Cardiovascular diseases (CVDs) [Internet]. [Accessed 28. August 2019]. Available under: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  3. Laslett LJ, Alagona P, Clark BA, Drozda JP, Saldivar F, Wilson SR, u. a. The Worldwide Environment of Cardiovascular Disease: Prevalence, Diagnosis, Therapy, and Policy Issues. J Am Coll Cardiol. Dezember 2012;60(25):S1–49.
  4. World Health Organization, Herausgeber. Prevention of cardiovascular disease: guidelines for assessment and management of cardiovascular risk. Geneva: World Health Organization; 2007. 86 S.
  5. Batsis JA, Lopez-Jimenez F. DCeabartediovascular risk assessment - From individual risk prediction to estimation of global risk and change in risk in the population. 2010;6.
  6. Modesti PA, Agostoni P, Agyemang C, Basu S, Benetos A, Cappuccio FP, u. a. Cardiovascular risk assessment in low-resource settings: a consensus document of the European Society of Hypertension Working Group on Hypertension and Cardiovascular Risk in Low Resource Settings. J Hypertens. Mai 2014;32(5):951–60.
  7. Chamnan P, Aekplakorn W. Cardiovascular Risk Assessment in Developing World. In: Kumar A, Herausgeber. Recent Trends in Cardiovascular Risks [Internet]. InTech; 2017 [Accessed 27. August 2019]. Available under: http://www.intechopen.com/books/recent-trends-in-cardiovascular-risks/cardiovascular-risk-assessment-in-developing-world
  8. D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, u. a. General Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study. Circulation. 12. Februar 2008;117(6):743–53.
  9. Rossello X, Dorresteijn JA, Janssen A, Lambrinou E, Scherrenberg M, Bonnefoy-Cudraz E, u. a. Risk prediction tools in cardiovascular disease prevention: A report from the ESC Prevention of CVD Programme led by the European Association of Preventive Cardiology (EAPC) in collaboration with the Acute Cardiovascular Care Association (ACCA) and the Association of Cardiovascular Nursing and Allied Professions (ACNAP). Eur J Prev Cardiol. September 2019;26(14):1534–44.
  10. Pencina MJ, D’Agostino RB, Larson MG, Massaro JM, Vasan RS. Predicting the 30-Year Risk of Cardiovascular Disease: The Framingham Heart Study. Circulation. 23. Juni 2009;119(24):3078–84.
  11. WHO | WHO/ISH cardiovascular risk prediction charts [Internet]. WHO. [Accessed 28. August 2019]. Available under: https://www.who.int/cardiovascular_diseases/guidelines/Chart_predictions/en/
  12. Firnhaber JM. CVD risk prediction tools have largely been used to determine the advisability of statin therapy. They might be better used to counsel patients about across-the- board risk factor modification. J Fam Pract. 2018;67(9):6.
  13. WHO, Herausgeber. cvd_qa. :4.
  14. Bazo-Alvarez JC, Quispe R, Peralta F, Poterico JA, Valle GA, Burroughs M, u. a. Agreement Between Cardiovascular Disease Risk Scores in Resource-Limited Settings: Evidence from 5 Peruvian Sites. Crit Pathw Cardiol. Juni 2015;14(2):74–80.
  15. HOB, IS, YC, NS, SC, DT, et al. Cardiovascular Risk (CV) Assessment according to the WHO Cholesterol Free Chart in the Cardiology Department of University Hospital Gabriel Touré. Cardiol Vasc Res. 30. Juni 2018;2(2):1–5.
  16. Gillis EE, Sullivan JC. Sex Differences in Hypertension: Recent Advances. Hypertension. Dezember 2016;68(6):1322–7.
  17. Delles C, Currie G. Sex differences in hypertension and other cardiovascular diseases. J Hypertens. April 2018;36(4):768.
  18. Raghu A, Praveen D, Peiris D, Tarassenko L, Clifford G. Implications of Cardiovascular Disease Risk Assessment Using the WHO/ISH Risk Prediction Charts in Rural India. Mukhopadhyay P, Herausgeber. PLOS ONE. 19. August 2015;10(8):e0133618.
  19. Norhayati M, Amirah SS, Husniati YL. Cardiovascular risk: associated factors, assessment and agreement between WHO/ISH risk prediction chart and Framingham Scoring System among Primary Care Patients in Kelantan, Malaysia. Public Health. 2013;5(12):12.
  20. Premanandh K, Shankar R. Predicting 10-year cardiovascular risk using WHO/ISH risk prediction chart among urban population in Salem. Int J Community Med Public Health. 24. November 2018;5(12):5228.
  21. Mendis S, Lindholm LH, Anderson SG, Alwan A, Koju R, Onwubere BJC, u. a. Total cardiovascular risk approach to improve efficiency of cardiovascular prevention in resource constrain settings. J Clin Epidemiol. Dezember 2011;64(12):1451–62.
  22. Pedro JM, Brito M, Barros H. Cardiovascular Risk Assessment in Angolan Adults: A Descriptive Analysis from CardioBengo, a Community-Based Survey. Int J Hypertens. 6. September 2018;2018:1–6.
  23. Porfi rio Nordet, Shanti Mendis, Alfredo Dueñas, Reinaldo de la Novalpo MD, Nurys Armas, Ismael L. de la Noval, u. a. Total Cardiovascular Risk Assessment and Management Using Two Prediction Tools, with and without Blood Cholesterol. MEDICC Rev Oct 2013 Vol 15 No 4.
  24. Kadiyala P, Renuka M, Kulkarni P, Narayanamurthy MR. Prevalence of risk factors and 10 year risk estimation of cardiovascular diseases among rural population of Mysuru, Karnataka. Int J Community Med Public Health. 22. Februar 2019;6(3):1178–85.
  25. Savitharani B, Madhu B, Renuka M, Sridevi, Ashok N. Utilization of who-ish 10-year cvd risk prediction chart as a screening tool among supporting staff of a tertiary care hospital, Mysuru, India. Heart India. 2016;4(1):13.
  26. Fatema K, Zwar NA, Milton AH, Rahman B, Ali L. Application of two versions of the WHO/international society of hypertension absolute cardiovascular risk assessment tools in a rural Bangladeshi population. BMJ Open. Oktober 2015;5(10):e008140.
  27. Barua L, Faruque M, Banik P, Ali L. Concordance between two versions of world health organization/international society of hypertension risk prediction chart and framingham risk score among postmenopausal women in a rural area of Bangladesh. Indian J Public Health. 2019;63(2):101.

Most read articles by the same author(s)

1 2 > >>