Main Article Content

Abstract

ABSTRACT
Introduction. This study focuses on the analysis of the evolution of drill bit wear as a function of the cutting parameters and the number of holes in the case of bone drilling. Materials and methods. The holes are made with drill bits 3.2mm in diameter on the tibia bones of a bovine aged about one year. Rotational speeds of 100, 200 and 300 rpm as well as feed rates of 30 and 60 mm/min are adopted during drilling. Drill bits are used to make 2, 4, 6, 8 and 10 holes and the total hole thickness is assessed. The locks are then analyzed by digital microscopy and a new lock serves as a reference. Results. The quantitative evaluation of the wear shows that the width of the central edge increases significantly with the number of drill holes and the rotational speed. The feed rate has very little effect on this parameter. The vertex angle, although slightly influenced by the number of holes, remains almost insensitive to the variation of the cutting parameters. Qualitative analysis shows moderate wear after 4 to 6 piercings. This wear becomes severe after 10 holes, especially at high rotation speeds (300 rpm) with the appearance of large plastic deformations and circular streaks on the cutting edge. Conclusion. This study suggests not to exceed 4 reuses of the same bit in the case of non-lubricated drilling.
 
RÉSUMÉ
Introduction. Cette étude porte sur l'analyse de l'évolution de l'usure des mèches en fonction des paramètres de coupe et du nombre de trous durant le perçage osseux.  Matériels et méthodes. Les trous sont réalisés avec des mèches de 3,2 mm de diamètre sur des tibias d'os bovin âgé d'un an. Des vitesses de rotation de 100, 200 et 300 tr/min ainsi que des vitesses d'avance de 30 et 60 mm/min sont adoptées pour la réalisation des essais. Les mèches sont utilisées pour réaliser 2, 4, 6, 8 et 10 trous et l'épaisseur totale du trou est évaluée. Les mèches sont ensuite analysées par microscopie numérique avec une mèche neuve servant de référence. Résultats. L'évaluation quantitative de l'usure montre que la largeur de l'arête centrale augmente considérablement avec le nombre de trous percés et la vitesse de rotation. La vitesse d'avance a très peu d'influence sur ce paramètre. L'angle au sommet, bien que légèrement influencé par le nombre de trous, reste presque insensible à la variation des paramètres de coupe. L'analyse qualitative montre une usure modérée à partir de 4 à 6 perçages. Cette usure devient sévère après 10 trous, surtout à des vitesses de rotation élevées (300 tr/min) avec l'apparition de grandes déformations plastiques et de stries circulaires sur l'arête de coupe. Conclusion. Cette étude suggère de ne pas dépasser 4 réutilisations de la même mèche dans le cas d'un perçage non irrigué.
 

Article Details

How to Cite
Jean Gustave Tsiagadigui, Marie-Ange Ngo Yamben, Paul William Mejouyo Huisken, Marc Leroy Guifo, Loïc Fonkoue, Handy Eone, Jean Bahebeck, Ebenezer Njeugna, & Maurice Aurélien Sosso. (2023). Effects of Cutting Parameters on Drill Wear during Bone Drilling. HEALTH SCIENCES AND DISEASE, 24(4). https://doi.org/10.5281/hsd.v24i4.4377

References

  1. (1) E. . Klocke.F, “Keynote on Dry Cutting,” CIRP Ann., vol. 46, no. 2, pp. 519–526, 1997.
  2. (2) Á. R. Machado & J. Wallbank, “The effect of extremely low lubricant volumes in machining,” Wear, vol. 210, no. 1–2, pp. 76–82, 1997, doi: 10.1016/S0043-1648(97)00059-8.
  3. (3) K. Weinert, I. Inasaki, J. W. Sutherland, & T. Wakabayashi, “Dry machining and minimum quantity lubrication,” CIRP Ann. - Manuf. Technol., vol. 53, no. 2, pp. 511–537, 2004, doi: 10.1016/S0007-8506(07)60027-4.
  4. (4) G. Augustin, S. Davila, K. Mihoci, T. Udiljak, D. S. Vedrina, & A. Antabak, “Thermal osteonecrosis and bone drilling parameters revisited,” Arch. Orthop. Trauma Surg., vol. 128, no. 1, pp. 71–77, 2008, doi: 10.1007/s00402-007-0427-3.
  5. (5) A. R. Erikssons, T. Albrekt, & B. Albrektsson, “Anders R. Eriksson1s2 Tomas Albrekt~son’~~ Bjtbrn Albrektsson4,” Acta Orthop. Scand., pp. 629–631, 1984.
  6. (6) W. R. Krause, “Orthogonal Bone Cutting: Saw Design and Operating Characteristics,” vol. 109, no. August 1987, pp. 263–271, 1987.
  7. (7) J. Lundskog, “Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury.,” Scand. J. Plast. Reconstr. Surg., vol. 9, pp. 1–80, 1972.
  8. (8) K. Alam, A. V. Mitrofanov, & V. V. Silberschmidt, “Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone,” Med. Eng. Phys., vol. 33, no. 2, pp. 234–239, 2011, doi: 10.1016/j.medengphy.2010.10.003.
  9. (9) W. Wang, Y. Shi, N. Yang, & X. Yuan, “Experimental analysis of drilling process in cortical bone,” Med. Eng. Phys., vol. 36, no. 2, pp. 261–266, 2014, doi: 10.1016/j.medengphy.2013.08.006.
  10. (10) X. Qin, X. Zhang, H. Li, B. Rong, D. Wang, H. Zhang, & G. Zuo, “Comparative analyses on tool wearin helical milling of Ti-6Al-4Vusing diamond-coated tool and TiAlN-coated tool,” J. Adv. Mech. Des. Syst. Manuf., vol. 8, no. 1, pp. 1–14, 2014, doi: 10.1299/jamdsm.2014jamdsm0004.
  11. (11) D. Dimla, “Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods,” Int. J. Mach. Tools Manuf., vol. 40, no. 8, pp. 1073–1098, 2000, [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0890695599001224
  12. (12) G. Byrne, D. Dornfeld, I. Inasaki, G. Ketteler, W. König, & R. Teti, “Tool Condition Monitoring (TCM) - The Status of Research and Industrial Application,” CIRP Ann. - Manuf. Technol., vol. 44, no. 2, pp. 541–567, 1995, doi: 10.1016/S0007-8506(07)60503-4.
  13. (13) K. Patra, S. K. Pal, & K. Bhattacharyya, “Artificial neural network based prediction of drill flank wear from motor current signals,” Appl. Soft Comput. J., vol. 7, no. 3, pp. 929–935, 2007, doi: 10.1016/j.asoc.2006.06.001.
  14. (14) L. Boulanouar & N. Mokas, “Comportement à l’Usure des Forets Hélicoïdaux en Acier Rapide Lors du Perçage de l’Acier C18 = Wear Behaviour of HHS Twist Drills When Drilling C18 Steel,” Synthèse Rev. des Sci. la Technol., vol. 69, no. 32, pp. 58–68, 2016, doi: 10.12816/0027952.
  15. (15) W. Allan, E. D. Williams, & C. J. Kerawala, “Effects of repeated drill use on temperature of bone during preparation for osteosynthesis self-tapping screws,” Br. J. Oral Maxillofac. Surg., vol. 43, no. 4, pp. 314–319, 2005, doi: 10.1016/j.bjoms.2004.11.007.
  16. (16) N. Oliveira, F. Alaejos-Algarra, J. Mareque-Bueno, E. Ferrés-Padró, & F. Hernández-Alfaro, “Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: Twisted stainless steel and ceramic drills,” Clin. Oral Implants Res., vol. 23, no. 8, pp. 963–969, 2012, doi: 10.1111/j.1600-0501.2011.02248.x.
  17. (17) G. E. Chacon, D. L. Bower, P. E. Larsen, E. A. McGlumphy, & F. M. Beck, “Heat production by 3 implant drill systems after repeated drilling and sterilization,” J. Oral Maxillofac. Surg., vol. 64, no. 2, pp. 265–269, 2006, doi: 10.1016/j.joms.2005.10.011.
  18. (18) T. P. Queiroz, F. Á. Souza, R. Okamoto, R. Margonar, V. A. Pereira-Filho, I. R. Garcia, & E. H. Vieira, “Evaluation of Immediate Bone-Cell Viability and of Drill Wear After Implant Osteotomies: Immunohistochemistry and Scanning Electron Microscopy Analysis,” J. Oral Maxillofac. Surg., vol. 66, no. 6, pp. 1233–1240, 2008, doi: 10.1016/j.joms.2007.12.037.
  19. (19) A. C. G. de S. Carvalho, T. P. Queiroz, R. Okamoto, R. Margonar, I. R. Garcia, & O. Magro Filho, “Evaluation of bone heating, immediate bone cell viability, and wear of high-resistance drills after the creation of implant osteotomies in rabbit tibias.,” Int. J. Oral Maxillofac. Implants, vol. 26, no. 6, pp. 1193–201, 2011, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/22167423
  20. (20) R. M. Jochum & P. A. Reichart, “Influence of multiple use of Timedur®-titanium cannon drills: Thermal response and scanning electron microscopic findings,” Clin. Oral Implants Res., vol. 11, no. 2, pp. 139–143, 2000, doi: 10.1034/j.1600-0501.2000.110206.x.
  21. (21) T. Staroveski, D. Brezak, & T. Udiljak, “Drill wear monitoring in cortical bone drilling,” Med. Eng. Phys., vol. 37, no. 6, pp. 560–566, 2015, doi: 10.1016/j.medengphy.2015.03.014.
  22. (22) J. E. Lee, B. A. Gozen, & O. B. Ozdoganlar, “Modeling and experimentation of bone drilling forces,” J. Biomech., vol. 45, no. 6, pp. 1076–1083, 2012, doi: 10.1016/j.jbiomech.2011.12.012.
  23. (23) Z. Liao & D. A. Axinte, “On chip formation mechanism in orthogonal cutting of bone,” Int. J. Mach. Tools Manuf., vol. 102, pp. 41–55, 2016, doi: 10.1016/j.ijmachtools.2015.12.004.
  24. (24) Y. Wang, M. Cao, Y. Zhao, G. Zhou, W. Liu, & D. Li, “Experimental investigations on microcracks in vibrational and conventional drilling of cortical bone,” J. Nanomater., vol. 2013, 2013, doi: 10.1155/2013/845205.
  25. (25) A. Gourrier, I. Reiche, A. Gourrier, I. Reiche, & L. Chapitre, “Chapitre 3 L ’ os : morphologie , structure et composition chimique To cite this version : HAL Id : hal-01131757 L ’ os : morphologie , structure et composition chimique,” pp. 23–37, 2015.
  26. (26) S. L. Croker, W. Reed, & D. Donlon, “Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa,” Forensic Sci. Int., vol. 260, pp. 104.e1-104.e17, 2016, doi: 10.1016/j.forsciint.2015.12.022.
  27. (27) S. Maegawa, Y. Morikawa, S. Hayakawa, F. Itoigawa, & T. Nakamura, “Effects of fiber orientation direction on tool-wear processes in down-milling of carbon fiber-reinforced plastic laminates,” Int. J. Autom. Technol., vol. 9, no. 4, pp. 356–364, 2015, doi: 10.20965/ijat.2015.p0356.
  28. (28) M. Jan, P. Zbigniew, K. Marcin, S. Janusz, B. Marcin, G.-D. Monika, & L. Piotr, “The quality of tools used in bone surgery,” Maint. Probl., vol. 4, 2006.
  29. (29) G. Augustin, T. Zigman, S. Davila, T. Udilljak, T. Staroveski, D. Brezak, & S. Babic, “Cortical bone drilling and thermal osteonecrosis,” Clin. Biomech., vol. 27, no. 4, pp. 313–325, 2012, doi: 10.1016/j.clinbiomech.2011.10.010.