Main Article Content

Abstract


RÉSUMÉ
Introduction. Le vieillissement est un processus lent et progressif différent de la maladie, dont la cause principale est la présence des radicaux libres et les attaques oxydatives de l’ADN mitochondriale dans l’organisme. La fréquence des délétions de l’ADN mitochondriale augmenterait de façon exponentielle à partir de 50 ans pour atteindre des niveaux considérables chez des personnes plus âgées. Objectif. Mesurer l’activité antioxydante du plasma de femmes saines sans pathologie chronique dont l’étiologie serait liée au stress oxydatif, et dont l’âge est inférieur ou égal à 50 ans, par piégeage du radical libre ABTS.+. L’étude vise à observer l’évolution de la capacité antiradicalaire du sang avec la prise d’âge, jusqu’à 50 ans. Résultats. L’activité antiradicalaire moyenne des femmes d’âges  40 ans était de 2,2% supérieure à celle des femmes d’âges ≤ 40 ans. L’activité antiradicalaire des femmes en surpoids avec une IMC supérieur à 25 kg/m2 et un âge moyen de 42,16 ± 7,78 ans est plus ou moins équivalente à celle des femmes à corpulence normale avec un IMC inférieur à 2525 kg/m2 ayant un âge moyen de 36,25 ± 8,95 ans. L’activité antiradicalaire moyenne des femmes ayant moins de 3 gestités et un âge moyen de 32,25 ± 7,13 % ans est peu différente de celle des femmes ayant une gestité ≥ 3 avec un âge moyen de 44,83 ± 4,35% ans. L’activité antiradicalaire moyenne des femmes avec des parités inférieures à 3 et un âge moyen de 35 ± 7,32 ans est équivalente à celle des femmes de parités supérieures ou égales à 3 avec un âge moyen de 47,83 ± 2,16% ans. L’activité antiradicalaire du plasma des femmes consommant 2 à 3 fruits et légumes par jour avec un âge moyen de 43,6 ± 4,39 ans est supérieur de 3,5% environ à celles des femmes ne consommant que 1 fruit et légume/jour d’un âge moyen de 36 ± 10,07 ans. Conclusion. L’évaluation de la capacité antioxydante totale du sang des femmes par piégeage du radical montre qu’un léger stress oxydant s’installe déjà progressivement dans le plasma sanguin de la femme d’âge inférieur ou égale 50 ans. La consommation des fruits et légumes enrichie l’organisme en composés antioxydants. Une gestité et une parité supérieures ou égales à 3 freinent l’apparition du stress oxydatif.


ABSTRACT
Introduction. Aging is a slow and progressive process different from disease, the main cause of which is the presence of free radicals and oxidative attacks on mitochondrial DNA in the body. The frequency of mitochondrial DNA deletions would increase exponentially from the age of 50 to reach considerable levels in older people. Objective. To measure the antioxidant activity of the plasma of healthy women without chronic pathology whose etiology would be linked to oxidative stress, and whose age is less than or equal to 50 years, by trapping the free radical ABTS.+. The study aims to observe the evolution of the antiradical capacity of the blood with increasing age, up to 50 years. Results. The average antiradical activity of women aged  40 years was 2.2% higher than that of women aged ≤ 40 years. The antiradical activity of overweight women with a BMI greater than 25 kg/m2 and an average age of 42.16 ± 7.78 years is more or less equivalent to that of women of normal build with a BMI less than 2525 kg/m2 with an average age of 36.25 ± 8.95 years. The mean antiradical activity of women with less than 3 gestations and an average age of 32.25 ± 7.13% years is little different from that of women with a gestation ≥ 3 with an average age of 44.83 ± 4.35 % year. The average antiradical activity of women with parities less than 3 and an average age of 35 ± 7.32 years is equivalent to that of women with parities greater than or equal to 3 with an average age of 47.83 ± 2.16% year. The antiradical activity of the plasma of women consuming 2 to 3 fruits and vegetables per day with an average age of 43.6 ± 4.39 years is higher by about 3.5% than those of women consuming only 1 fruit and vegetable / day with a mean age of 36 ± 10.07 years. Conclusion. The evaluation of the total antioxidant capacity of women's blood by radical scavenging shows that a slight oxidative stress is already gradually settling in the blood plasma of women aged less than or equal to 50 years. The consumption of fruits and vegetables enriches the body with antioxidant compounds. Gestity and parity greater than or equal to 3 slow down the onset of oxidative stress.

Article Details

How to Cite
N’nege ép. Mezui-Mbeng , M., Lendoye, E., Makoyo, O., Bekale , S., Ella Ndong , J., Nguema Edzang, R., & Ngou-Milama , E. (2022). Effet de l’Âge sur l’Activité Antioxydante du Plasma de Sujets Sains par Piégeage du Radical ABTS+. HEALTH SCIENCES AND DISEASE, 23(2 Suppl 1). https://doi.org/10.5281/hsd.v23i2 Suppl 1.3418

References

  1. Sies H., Stahl W., and Sundquist A.R. Antioxidant functions of vitamins: vitamin E and C, beta-carotene, and other carotenoids. Ann. N. Y. Acad. Sci. 1992. 669:7-20
  2. Liebler D.C. The role of metabolism in the anti-oxidant function of vitamin E. Crit. Rev. Food Sci. Nutr. 1993. 23:147-169.
  3. Halliwell B. Free radicals and antioxidants: a personal view. Nutr. Rev. 1994. 52: 253-265.
  4. Sharifian A, Gharavi M, Pasalar P, Aminian O. Effect of extremely low frequency magnetic field on antioxidant activity in plasma and red blood cells in spot welders. Int Arch Occup Environ Health. 2009 Jan; 82(2): 259-66. doi: 10.1007/s00420-008-0332-2.
  5. Kozakiewicz M, Kornatowski M, Krzywińska O, Kędziora-Kornatowska K. Changes in the blood antioxidant defense of advanced age people. Clin Interv Aging. 2019 May 1; 14: 763-771. doi: 10.2147/CIA.S201250.
  6. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000. 408: 239-247.
  7. Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001. 31: 1287-1312.
  8. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015; 4:180-3. doi: 10.1016/j.redox.2015.01.002.
  9. Choi S, Liu X, Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin. 2018 Jul;39(7):1120-1132. doi: 10.1038/aps.2018.25. Epub 2018 Jun 21. PMID: 29926844; PMCID: PMC6289396.
  10. Klaunig JE. Oxidative Stress and Cancer. Curr Pharm Des. 2018; 24(40): 4771-4778. doi: 10.2174/1381612825666190215121712. PMID: 30767733.
  11. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019 Dec;70(6). doi: 10.26402/jpp.2019.6.01. Epub 2020 Feb 19. PMID: 32084643.
  12. Tönnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease. J Alzheimers Dis. 2017;57(4):1105-1121. doi: 10.3233/JAD-161088. PMID: 28059794; PMCID: PMC5409043.
  13. Ialongo C. Preanalytic of total antioxidant capacity assays performed in serum, plasma, urine and saliva. Clin Biochem. 2017 Apr;50(6):356-363. doi: 10.1016/j.clinbiochem.2016.11.037. Epub 2016 Dec 3. PMID: 27919600.
  14. Feng Y, Wang X. Antioxidant therapies for Alzheimer's disease. Oxid Med Cell Longev. 2012;2012:472932. doi: 10.1155/2012/472932. Epub 2012 Jul 25. PMID: 22888398; PMCID: PMC3410354.
  15. Prie BE, Iosif L, Tivig I, Stoian I, Giurcaneanu C. Oxidative stress in androgenetic alopecia. J Med Life. 2016 Jan-Mar;9(1):79-83. PMID: 27974920; PMCID: PMC5152608.
  16. Fischer MA, Gransier TJ, Beckers LM, Bekers O, Bast A, Haenen GR. Determination of the antioxidant capacity in blood. Clin Chem Lab Med. 2005;43(7):735-40. doi: 10.1515/CCLM.2005.125. PMID: 16207134.
  17. Apak R, Güçlü K, Ozyürek M, Bektaşoğlu B, Bener M. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers. Methods Mol Biol. 2010;594:215-39. doi: 10.1007/978-1-60761-411-1_15. PMID: 20072920.
  18. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004 Feb;37(2):112-9. doi: 10.1016/j.clinbiochem.2003.10.014. PMID: 14725941.
  19. Sadowska-Krępa E, Domaszewski P, Pokora I, Żebrowska A, Gdańska A, Podgórski T. Effects of medium-term green tea extract supplementation combined with CrossFit workout on blood antioxidant status and serum brain-derived neurotrophic factor in young men: a pilot study. J Int Soc Sports Nutr. 2019 Mar 21;16(1):13. doi: 10.1186/s12970-019-0280-0. PMID: 30898134; PMCID: PMC6429762.
  20. Abe S, Tanaka Y, Fujise N, Nakamura T, Masunaga H, Nagasawa T, Yagi M. An antioxidative nutrient-rich enteral diet attenuates lethal activity and oxidative stress induced by lipopolysaccharide in mice. JPEN J Parenter Enteral Nutr. 2007 May-Jun;31(3):181-7. doi: 10.1177/0148607107031003181. PMID: 17463142.
  21. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004 Apr;37(4):277-85. doi: 10.1016/j.clinbiochem.2003.11.015. PMID: 15003729.
  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, and Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio.Med. 1999; 26: 1231-1237.
  23. Romay C, Pascual C, Lissi EA. The reaction between ABTS radical cation and antioxidants and its use to evaluate the antioxidant status of serum samples. Braz J Med Biol Res. 1996 Feb;29(2):175-83. PMID: 8731346.
  24. Yu TW, Ong CN. Lag-time measurement of antioxidant capacity using myoglobin and 2, 2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid): rationale, application, and limitation. Anal Biochem. 1999 Nov 15;275(2):217-23. doi: 10.1006/abio.1999.4314. PMID: 10552907.
  25. Gorinstein S, Caspi A, Libman I, Leontowicz H, Leontowicz M, Tashma Z, Katrich E, Jastrzebski Z, Trakhtenberg S. Bioactivity of beer and its influence on human metabolism. Int J Food Sci Nutr. 2007 Mar; 58(2):94-107. doi: 10.1080/09637480601108661. PMID: 17469765.
  26. Martínez-López S, Sarriá B, Mateos R, Bravo-Clemente L. Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. Eur J Nutr. 2019 Mar;58(2):865-878. doi: 10.1007/s00394-018-1726-x. Epub 2018 Jun 1. PMID: 29858625.
  27. N’Negue ép. Mezui-Mbeng, Ella Ndong J. G., Nguema Edzang R. W., Lendoye E., Ngou Milama. Cinétique d’étude de l’activité antioxydante d’un extrait aqueux de calices séchés d’Hibiscussabdariffa par piégeage de l’ion radicalaire ABTS•+. IJAR. 2020; 6 (11): 361-367.
  28. Sadat L, Cakir-Kiefer C, Marie-Andrée N’Negue M.-A., Gaillard J.-L., Girardet J.-M., Miclo L. Isolation and identification of antioxidative peptides from bovine α-lactalbumin. Int Dairy J. 2011. 21(4): 214-221. https://doi.org/10.1016/j.idairyj.2010.11.011.
  29. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond). 1993 Apr;84(4):407-12. doi: 10.1042/cs0840407. PMID: 8482045.
  30. Rice-Evans C, Miller NJ. Total antioxidant status in plasma and body fluids. Methods Enzymol. 1994;234:279-93. doi: 10.1016/0076-6879(94)34095-1. PMID: 7808295.
  31. Schofield D, Braganza JM. Shortcomings of an automated assay for total antioxidant status in biological fluids. Clin Chem. 1996 Oct;42(10):1712-4. PMID: 8855160.
  32. Hopkins FG, Morgan EJ. Some relations between ascorbic acid and glutathione. Biochem J. 1936 Aug;30(8):1446-62. doi: 10.1042/bj0301446. PMID: 16746177; PMCID: PMC1263204.
  33. Packer JE, Slater TF, Willson RL. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature. 1979 Apr 19;278(5706):737-8. doi: 10.1038/278737a0. PMID: 431730.

Most read articles by the same author(s)