Main Article Content

Abstract


RÉSUMÉ
Introduction. Les plages abritent de nombreuses activités humaines. Toutefois, leur intégrité est menacée par des polluants de natures diverses dont les hydrocarbures. Dans le but de contribuer à la préservation de l’environnement marin, une étude expérimentale consistant en la détermination des capacités de dégradation du gasoil commercial par des bactéries a été conduite. Matériel et Méthodes. L’activité, en aérobiose, sur du gasoil commercial, de souches de Bacillus sp et de Sphingomonas paucimobilis isolées des eaux de plage de Kribi et Limbé a été évaluée durant 35 jours. Le pourcentage de dégradation des hydrocarbures était par spectroscopie infrarouge à transformer de Fourier avec Réflexion Totale Atténuée. Les principaux indicateurs de biodégradation d’un hydrocarbure ont été mesurés. Résultats : Les deux souches bactériennes ont été capables de métaboliser les principaux hydrocarbures du gasoil. La durée de la phase de latence et le pourcentage de dégradation en fin d’expérience étaient fonction de la bactérie et de l’hydrocarbure. Les pourcentages de dégradation les plus élevés ont été observés vis-à-vis des hydrocarbures aliphatiques cycliques et le plus faible vis-à-vis des hydrocarbures aromatiques monocycliques. Les autres indicateurs atteignaient généralement des valeurs maximales au 20ème jour. Conclusion. Bacillus sp et de Sphingomonas paucimobilis seraient dotées d’oxygénases responsables de l’activité métabolique constatée. L’augmentation coordonnée des indicateurs de suivi suggère que les produits issus de la biodégradation du gasoil seraient utilisés pour la croissance bactérienne. Une association de ces deux microorganismes pourrait si elle s’avérait synergique ou additive être bénéfique.
ABSTRACT
Introduction. Beaches play host to many human activities. However, their integrity is threatened by pollutants of various kinds, such as hydrocarbons. In order to contribute to the preservation of the marine environment, an experimental study was carried out, consisting of the determination of the degradation capacities of commercial gasoline by bacteria. Material and Methods. The activity, in aerobiosis, on commercial gasoline of strains of Bacillus sp and Sphingomonas paucimobilis isolated from the beach waters of Kribi and Limbe was assessed for 35 days. The percentage of degradation of the hydrocarbons was obtained by attenuated total reflection Fourier transform infrared spectroscopy. The main indicators of biodegradation of a hydrocarbon were measured. Results. The two bacterial strains were able to metabolize the main hydrocarbons of gasoline. The duration of the lag phase and the percentage of degradation at the end of the experiment depended on the bacteria and the hydrocarbon. The highest percentages of degradation were observed with respect to the cyclic aliphatic hydrocarbons and the lowest with respect to the monocyclic aromatic hydrocarbons. The other indicators generally reached maximum values on the 20th day. Conclusion. Bacillus sp and Sphingomonas paucimobilis possess oxygenases responsible for the observed metabolic activity. The coordinated increase in monitoring indicators suggests that products derived from the biodegradation of gasoline would be used for bacterial growth. An association of these two microorganisms could be beneficial if it proved to be synergistic or additive.

Article Details

How to Cite
Ntsama Essomba, C., Leme B, L., Abologo A, L., Tombedi, M. C., & Bilong Bilong, C. F. (2017). Biodégradation Aérobie du Gasoil par des Souches de Bacillus Sp et Sphingomonas Paucimobilis Isolées des Eaux des Plages de Kribi et Limbe, Cameroun. HEALTH SCIENCES AND DISEASE, 18(4). https://doi.org/10.5281/hsd.v18i4.929

References

  1. TOPF, 2012. Devenir des déversements d’hydrocarbures en mer: guide d’informations. 1 Oliver’s yard, 55 city road, London EC1Y 1HQ, Royaume Uni: 2-11 p.
  2. Zakir A. A., Desilva C. & Badesab S. 2012. Total petroleum hydrocarbon in the tissues of some commercially important fishes of the Bay of Bengal. Marine Pollution Bulletin, 64: 2564-2568.
  3. Burt J. R., Hardy R. & Whittle K. J. 1992. Pelagic fish: the resource and its exploitation
  4. fishing. News Books, Oxford: 352 p.
  5. Bert J. B. 2002. The wreckage of the oil tanker ‘Erika’human health risk assessment of beach cleaning, sunbathing and swimming. Toxicology Letters, 128: 55-68.
  6. Gupta P., Banerjee D. & Bhargava S. 1993. Prevalence of impared lung function in rubber manufacturing factory workers exposed to benzo(a)pyrene and respirable particulate matter. Inddor Environmental, 2: 26-31.
  7. Ki-Hyun K., Shamin A. J., Ehsanul K. & Richard J. C. B. 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects . Environment International, 60: 71-80
  8. Bing W., Yan Z., Xu-Xiang Z. & Shu-Pei C. 2011. Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: quantitative analysis based on published monitoring data. Science of the Total Environment, 410: 112-118.
  9. Oudot J. 2000. Biodégradabilité du fuel de l’Erika. Microbiologie, 923: 945-950.
  10. Fernando B. L., Sanz R., Carmen M.M., Gonzalez M. & Sanchez D. 2009. Effect of different non ionic surfactants on the biodegradation of PAHs by diverse aerobic bacteria. International Biodeterioration and Biodegradation, 63: 913-92
  11. Leme Banock L., Ntsama E. C, Raducanu D., Caraman I., Abologo A. L. & Bilong B. C. F. 2016. Gasoline and diesel aerobic biodegradation investigated by spectral and chemometrics techniques. Environmental Engineering and Management Journal, 15: 605-612.
  12. Mao C. D., Jing L., Fu-Rui L., Meisheng Y., Xiao-Ming X., Juan P., Chou-Fei W., Jiang-Hai W. & Jian-Ping Y. 2014. Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil contaminated seawater at the Daya Bay, southern China. Marine Pollution Bulletin, 83: 79-86.
  13. Opere B. O., Oluwafemi S. O. & Adebanji A. R. 2013. Degradation of cyclohexane and cyclohexanone by Bacillus lentus strain LP32. African Journal of Biotechnology, 12:6632-6635.
  14. Bodour A., Drees K. P. & Maier R. M. 2004. Distribution of biosurfactant producing bacteria indisturbed and contamined arid southwestern soils. Applied and Environmental Microbiology, 69: 3280-3287
  15. Eilers P. & Marx B. 1996. Flexible smoothing with b-splines and penalties. Statistical Science, 11: 89-121.
  16. Geladi J. P., MacDougal D. & Martens H. 1985. Linearization and scatter correction for near infrared reflectance spectra of meat. Applied Spectroscopy, 39: 491–500
  17. Rinnan A., Berget V. A. F. & Balling E. S. 2009. Review of the most common pre-processing techniques for near-infrared spectra. Analytical Chemistry, 28: 1201-1222.
  18. Stuart B. 2004. Infrared spectroscopy : Fundamentals and applications. In Analytical techniques in the Sciences. Ed John Wiley & Sons, Ltd ISBNs: 0-470-85427-8 (HB); 0-470-85428-6 (PB): 15-132 p.
  19. Dumas S. 2003. Dosage du polymorphisme spectrométrie IRTF et chimiométrie: application aux formes
  20. polymorphes du CL20 (Hexaazahexanitroisowurtzitane/ HNIW). Thèse de Doctorat de l’Université Claude Bernard-Lyon I, France : 110-204 p.
  21. Yang M., L., Nie S., Hu J., Yu Q., Xie M., Xiong H., Den Z. & Zheng W., 2010.
  22. Rapid determination of docosahexaenoic acid in powdered oil by near infrared spectroscopy. Food Science and Technology International, 16: 187-193.
  23. Ladino-Orjuela G., Gomes E., Da Silva R., Salt C., Parsons J. R. 2016. Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. Reviews of Environmental Contamination and Toxicology, 237:105-21.
  24. Fan C.Y. & Krishnamurthy S. 1995. Enzymes for enhancing bioremediation of petroleum contaminated soils. Journal air Waste Manage Assessment, 45: 453-460.
  25. Wilson S. C. & Jones K. C. 1993. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs). Environmental Pollution, 81: 229-249.
  26. Darsa K.V., Thatheyus A. J. & Ramya D. 2014. Biodegradation of petroleum compound using the bacterium Bacillus subtilis. Science International, 2: 20-25.
  27. Brzostowicz P. C., Gibson K. I., Thomas S., Blasko M. S. & Rouviere P. 2000. Simultaneous identification of two cyclohexanone oxidation genes from an environmental Brevibacterium isolate using mRNA different display. Journal of Bacteriology, 182: 4241-4248.
  28. Lee E. H. & Cho K. S. 2008. Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1. Chemosphere. 7: 1738-1744.
  29. Maier R. M. 2009. Microorganisms and organic pollutants. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental Microbiology, 2nd Edition, Academic Press, Burlington: 387-420 p.
  30. Matvyeyeva O. L., Vasylchenko O. A. & Aliievа O. R. 2014. Microbial biosurfactants role in oil products biodegradation. International Journal of Environmental Bioremediation & Biodegradation, 2: 69-74
  31. Maiqian N., Xihou Y., Chunyan R., Yang W., Feng X. & Qirong S. 2010. Novel rhamnolip biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnology Advances, 28: 635–643.
  32. Chuling G., Zhi D., Yukshan W. & Fungyee N. T. 2010. Biodegradation ability and dioxygenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments. International Biodeterioration & Biodegradation, 64: 419-426;

Most read articles by the same author(s)