Main Article Content

Abstract

Background. During bone drilling, the cyclic use of the same drill bit causes progressive wear of the cutting edges. The resulting high frictional forces can lead to a large temperature variation around the drill point. Above 55°C, irreversible damage occurs to the bone tissue. Objective. To follow the evolution of the wear of a bit by measuring the temperature around the focus of the drilling, during repeated drilling by the same bit. Methods. An experimental study was conducted on a test bench, measuring temperatures during bone drilling as a function of spindle speed, feed rate and drill bit duty cycle. Bovine tibia cortices were used due to mechanical properties similar to those of human bone. Six thermocouples were placed in a spiral around the focus of the drilling with an increment of 0.5mm, so as to determine the heat flow during the drilling. The cutting parameters were: spindle speed 100, 200, 300 rpm, Feed rate 30, 60 mm/min; Number of holes 1, 2, 3. The same 3.2 mm diameter wick was used 3 times and the temperatures were measured at each test. Results. The risk of having temperatures above the critical threshold of 55°C was greater at the feed rate of 30 mm/min than at the feed rate of 60 mm/min. Temperature increased with both spindle speed and number of pierces regardless of other cutting conditions. The best cutting conditions were found for a spindle speed of 200 rpm and a feed rate of 60 mm/min and at a spindle speed of 100 rpm for a feed rate of 30 mm/min. When the spindle speed exceeded 200 rpm, the temperature seemed very high. The temperature gradients were calculated under drilling conditions where the maximum temperatures measured at the point closest to the drilling focus were below 55°C. The equations were used to calculate projected temperatures at the bone-wick interface (x=0). Conclusion. It was observed in the majority of cases that the temperatures were above the threshold of 55°C. It became clear that the thermal conductivity of bone is low. The heat remains concentrated around the piercing point.

Keywords

Bone Bone drilling Temperature Os Perçage osseux Température

Article Details

How to Cite
JG Tsiagadigui, B. Ndiwe, F. Nzoning, MAN Yamben, PWM Huisken, FE Belinga, H. Eone, J. Bahebeck, E. Njeugna, M. Sosso, & CM Ekengoue. (2023). Mesure Expérimentale des Variations de Température dans l’Os Dues à Certains Paramètres Physiques lors du Processus de Forage Osseux. HEALTH SCIENCES AND DISEASE, 24(4). https://doi.org/10.5281/hsd.v24i4.4375

References

  1. Pascarella A, Ciatti R, Pascarella F, Latte C, Di Salvatore MG, Liguori L, et al. Treatment of articular cartilage lesions of the knee joint using a modified AMIC technique. Knee Surg Sports Traumatol Arthrosc. avr 2010;18(4):509‑13.
  2. Apard T, Lahogue JF, Prové S, Hubert L, Talha A, Cronier P, et al. Traitement des fractures récentes de la diaphyse humérale par enclouage centromédullaire verrouillé rétrograde: Une étude prospective de 58 cas. Revue de Chirurgie Orthopédique et Réparatrice de l’Appareil Moteur. 1 janv 2006;92(1):19‑26.
  3. Lee JE, Chavez CL, Park J. Parameters affecting mechanical and thermal responses in bone drilling. Journal of Biomechanics. 71e éd. 2018;4‑21.
  4. Brown TD, Pedersen DR, Baker KJ, Brand RA. Mechanical consequences of core drilling and bone-grafting on osteonecrosis of the femoral head. J Bone Joint Surg Am. sept 1993;75(9):1358‑67.
  5. Pridie K, Gordon G. A method of resurfacing osteoarthritic knee joints. Journal of Bone and Joint Surgery. janv 1959;41(3):618‑9.
  6. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 1 janv 2006;17(3):319‑36.
  7. Hillery MT, Shuaib I. Temperature effects in the drilling of human and bovine bone. Journal of Materials Processing Technology. 30 août 1999;92‑93:302‑8.
  8. Bachus KN, Rondina MT, Hutchinson DT. The effects of drilling force on cortical temperatures and their duration: an in vitro study. Med Eng Phys. déc 2000;22(10):685‑91.
  9. Pandey RK, Panda SS. Drilling of bone: A comprehensive review. Journal of Clinical Orthopaedics and Trauma. 1 mars 2013;4(1):15‑30.
  10. Jacob CH, Berry JT, Pope MH, Hoaglund FT. A study of the bone machining process—Drilling. Journal of Biomechanics. 1 janv 1976;9(5):345‑9.
  11. Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg. janv 2008;128(1):71‑7.
  12. Dolan EB, Haugh MG, Tallon D, Casey C, McNamara LM. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting. J R Soc Interface. 7 déc 2012;9(77):3503‑13.
  13. Lundskog J. Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury. Scand J Plast Reconstr Surg. 1972;9:1‑80.
  14. Tai BL, Palmisano AC, Belmont B, Irwin TA, Holmes J, Shih AJ. Numerical evaluation of sequential bone drilling strategies based on thermal damage. Med Eng Phys. sept 2015;37(9):855‑61.
  15. Tahmasbi V, Ghoreishi M, Zolfaghari M. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. nov 2017;231(11):1012‑24.
  16. Berman AT, Reid JS, Yanicko Jr DR, Sih GC, Zimmerman M. Thermally induced bone necrosis in rabbits. Relation to implant failure in humans. Clinical Orthopaedics and Related Research. 1984;(186):284‑92.
  17. Kondo S, Okada Y, Iseki H, Hori T, Takakura K, Kobayashi A, et al. Thermological Study of Drilling Bone Tissue with a High-speed Drill. Neurosurgery. 1 mai 2000;46(5):1162‑8.
  18. Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech (Bristol, Avon). mai 2012;27(4):313‑25.
  19. Burny F, Donkerwolcke M, Moulart F, Bourgois R, Puers R, Van Schuylenbergh K, et al. Concept, design and fabrication of smart orthopedic implants. Medical engineering & physics. 2000;22(7):469‑79.
  20. Dolan E, Haugh M, Tallon D, Casey C, McNamara L. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting. Journal of The Royal Society Interface. 2012;9(77):3503‑13.
  21. Hutchinson DT, Bachus KN, Higgenbotham T. External fixation of the distal radius: to predrill or not to predrill. The Journal of hand surgery. 2000;25(6):1064‑8.
  22. Noble B. Bone microdamage and cell apoptosis. Eur Cell Mater. 21 déc 2003;6:46‑55; discusssion 55.
  23. Saha S, Pal S, Albright JA. Surgical Drilling: Design and Performance of an Improved Drill. Journal of Biomechanical Engineering. 1 août 1982;104(3):245‑52.
  24. Abouzgia, James DF. Measurements of shaft speed while drilling through bone. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. 1 avr 1995;54:379.
  25. Toksvig-Larsen S, Ryd L, Lindstrand A. On the problem of heat generation in bone cutting. Studies on the effects on liquid cooling. The Journal of Bone and Joint Surgery British volume. 1 janv 1991;73-B(1):13‑5.
  26. Natali C, Ingle P, Dowell J. Orthopaedic bone drills-can they be improved? Temperature changes near the drilling face. J Bone Joint Surg Br. mai 1996;78(3):357‑62.
  27. Eriksson AR, Albrektsson T, Albrektsson B. Heat caused by drilling cortical bone: temperature measured in vivo in patients and animals. Acta Orthopaedica Scandinavica. 1984;55(6):629‑31.
  28. Matthews LS, Green CA, Goldstein SA. The thermal effects of skeletal fixation-pin insertion in bone. J Bone Joint Surg Am. sept 1984;66(7):1077‑83.
  29. Calttenburg R, Cohen J, Conner S, Cook N. Thermal properties of cancellous bone. Journal of Biomedical Materials Research. 1975;9(2):169‑82.
  30. Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A. Thermal osteonecrosis and bone drilling parameters revisited. Archives of orthopaedic and trauma surgery. 2008;128(1):71‑7.
  31. Sharawy M, Misch CE, Weller N, Tehemar S. Heat generation during implant drilling: the significance of motor speed. J Oral Maxillofac Surg. oct 2002;60(10):1160‑9.
  32. Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg. 30 oct 2007;128(1):71‑7.
  33. Ashford RU, Pande KC, Dey A. Current practice regarding re-use of trauma instrumentation: results of a postal questionnaire survey. Injury. 1 janv 2001;32(1):37‑40.
  34. Skedros JG, Baucom SL. Mathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur. Journal of theoretical biology. 2007;244(1):15‑45.
  35. Allan W, Williams ED, Kerawala CJ. Effects of repeated drill use on temperature of bone during preparation for osteosynthesis self-tapping screws. British Journal of Oral and Maxillofacial Surgery. 1 août 2005;43(4):314‑9.
  36. Matthews LS, Hirsch C. Temperatures measured in human cortical bone when drilling. J Bone Joint Surg Am. mars 1972;54(2):297‑308.
  37. Augustin G, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S. Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int Orthop. juill 2012;36(7):1449‑56.
  38. Cantero J, Tardio M, Canteli J, Marcos M, Miguelez M. Dry drilling of alloy Ti–6Al–4V. International Journal of Machine Tools and Manufacture. 2005;45(11):1246‑55.
  39. Lee J, Gozen BA, Ozdoganlar OB. Modeling and experimentation of bone drilling forces. Journal of biomechanics. 2012;45(6):1076‑83.
  40. Jochum RM, Reichart PA. Influence of multiple use of Timedur®‐titanium cannon drills: thermal response and scanning electron microscopic findings. Clinical oral implants research. 2000;11(2):139‑43.

Similar Articles

You may also start an advanced similarity search for this article.