Main Article Content

Abstract

RÉSUMÉ
Introduction. Prematurity increases the likelihood of developmental delay, which refers to a condition where a child fails to meet developmental milestones at the expected age. Through this study, we set out to identify clinical and anthropometric measures that are associated with early neuromotor developmental outcomes in premature infants using the Infant Neurological International Battery (INFANIB) score. Methodology. This was a retrospective cohort study carried out at Douala Laquintinie Hospital (DLH) over a period of 3 years from January 2020 to December 2022. Developmental delay was defined as a transient or abnormal INFANIB score at 6 months of corrected age. Results. A total of 78 infants were retained for the study. Most infants were females (n=40, 51.28%) and were born through vaginal delivery (n=51, 65.38%). Median gestational age at birth was 32 weeks (Q1-Q3: 27-36). At birth, median weight and head circumference were 1810g (Q1-Q3: 1000-2400) and 30 cm (Q1-Q3: 28-31), respectively. Thirteen patients had icterus on admission (16.7%). INFANIB score at 6 months was abnormal in 42.3% (n=33) of patients. The head circumference at birth [aOR: 1.45 (0.9-2.33), p=0.046, b= -0.54] and the presence of icterus at birth [aOR: 31.41 (2.23-442.34), p=0.001, b= 1.35] were the two factors significantly associated with neuromotor developmental delay. Conclusion. Developmental delay was present in 42.3% of patients at 6 months. Head circumference at birth and icterus on admission were associated with developmental delay at 6 months. More robust and multicentric studies are needed to confirm these findings.
ABSTRACT
Introduction. La prématurité augmente la probabilité d'un retard de développement, c'est-à-dire le fait qu'un enfant n'atteigne pas les étapes de son développement à l'âge prévu. Cette étude a pour but d'identifier les mesures cliniques et anthropométriques qui sont associées aux résultats du développement neuromoteur précoce chez les enfants prématurés en utilisant le score Infant Neurological International Battery (INFANIB). Méthodologie. Il s'agit d'une étude de cohorte rétrospective menée à l'hôpital Laquintinie de Douala (DLH) sur une période de 3 ans allant de janvier 2020 à décembre 2022. Le retard de développement a été défini comme un score INFANIB transitoire ou anormal à 6 mois d'âge corrigé. Résultats. Au total, 78 nourrissons ont été retenus pour l'étude. La plupart des nourrissons étaient de sexe féminin (n=40, 51,28%) et étaient nés par voie basse (n=51, 65,38%). L'âge gestationnel médian à la naissance était de 32 semaines (Q1-Q3 : 27-36). À la naissance, le poids médian et le périmètre crânien étaient respectivement de 1810 g (Q1-Q3 : 1000-2400) et de 30 cm (Q1-Q3 : 28-31). Treize patients présentaient un ictère à l'admission (16,7 %). Le score INFANIB à 6 mois était anormal chez 42,3 % (n=33) des patients. Le périmètre crânien à la naissance [aOR : 1.45 (0.9-2.33), p=0.046, b= -0.54] et la présence d'un ictère à la naissance [aOR : 31.41 (2.23-442.34), p=0.001, b= 1.35] étaient les deux facteurs significativement associés au retard de développement neuromoteur. Conclusion. Un retard de développement était présent chez 42,3 % des patients à 6 mois. Le périmètre crânien à la naissance et l'ictère à l'admission étaient associés à un retard de développement à 6 mois. Des études plus solides et multicentriques sont nécessaires pour confirmer ces résultats.

Keywords

INFANIB neuromotor anthropometric outcome premature INFANIB neuromoteur anthropométrique devenir prématuré

Article Details

How to Cite
Eposse Ekoube Charlotte, Puepi Djike Yolande, Mbono Ritha Betoko, Mandeng Ma Linwa Edgar, Noukeu Njinkui Diomède, Moudze Béatrice, Sajida Misse Dicka, Épée Patricia, Alima Yanda Anastasie Nicole, Hassanatou Iyawa, Ngo Linwa Esther, Calixte Ida Penda, & Kedy Mangamba Koum Daniele-Christiane. (2024). Using the Infant Neurological International Battery (INFANIB) Score to Identify Clinical and Anthropometric Factors Associated with Early Neuromotor Developmental Outcomes in Premature Infants. HEALTH SCIENCES AND DISEASE, 25(3). https://doi.org/10.5281/hsd.v25i3.5392

References

  1. Njim T, Atashili J, Mbu R, Choukem SP. Low birth weight in a sub-urban area of Cameroon: an analysis of the clinical cut-off, incidence, predictors and complications. BMC Pregnancy Childbirth 2015;15:288.
  2. Li Z na, Wang S rong, Wang P. Associations between low birth weight and perinatal asphyxia: A hospital-based study. Medicine (Baltimore) 2023;102:e33137.
  3. Zhang M, Gazimbi MM, Chen Z, Zhang B, Chen Y, Yu Y, et al. Association between birth weight and neurodevelopment at age 1–6 months: results from the Wuhan Healthy Baby Cohort. BMJ Open 2020;10:e031916.
  4. Magdaleno R, Pereira BG, Chaim EA, Turato ER. Pregnancy after bariatric surgery: a current view of maternal, obstetrical and perinatal challenges. Arch. Gynecol. Obstet. 2012;285:559‑66.
  5. Faruk T, King C, Muhit M, Islam MK, Jahan I, Baset K ul, et al. Screening tools for early identification of children with developmental delay in low- and middle-income countries: a systematic review. BMJ Open 2020;10:e038182.
  6. Harper BD, Nganga W, Armstrong R, Forsyth KD, Ham HP, Keenan WJ, et al. Where are the paediatricians? An international survey to understand the global paediatric workforce. BMJ Paediatr. Open 2019;3:bmjpo.
  7. Malina RM. Racial/ethnic variation in the motor development and performance of American children. Can. J. Sport Sci. J. Can. Sci. Sport 1988;13:136‑43.
  8. Kelly Y, Sacker A, Schoon I, Nazroo J. Ethnic differences in achievement of developmental milestones by 9 months of age: The Millennium Cohort Study. Dev. Med. Child Neurol. 2006;48:825‑30.
  9. Pedersen SJ, Sommerfelt K, Markestad T. Early motor development of premature infants with birthweight less than 2000 grams. Acta Paediatr. Oslo Nor. 1992 2000;89:1456‑61.
  10. Valentini NC, de Borba LS, Panceri C, Smith BA, Procianoy RS, Silveira RC. Early Detection of Cognitive, Language, and Motor Delays for Low-Income Preterm Infants: A Brazilian Cohort Longitudinal Study on Infant Neurodevelopment and Maternal Practice. Front. Psychol. [Internet] 2021 [cité 2023 avr 18];12. Available from: https://www.frontiersin.org/articles/10.3389/fpsyg.2021.753551
  11. Richa ., Sharma M, Sohi I. Neurodevelopmental Profile of Preterm Babies in the First Year of Life: A Prospective Cohort Study. J. Clin. Diagn. Res. [Internet] 2021 [cité 2023 avr 19];Available from: https://jcdr.net/article_fulltext.asp?issn=0973-709x&year=2021&volume=15&issue=11&page=SC24&issn=0973-709x&id=15699
  12. Dean AG, Sullivan KM, Soe MM. OpenEpi: Open Source Epidemiologic Statistics for Public Health, Version 3.01 [Internet]. 2013 [cité 2022 avr 12];Available from: www.OpenEpi.com
  13. Akbari SAA, Montazeri S, Torabi F, Amiri S, Soleimani F, Majd HA. Correlation between anthropometric indices at birth and developmental delay in children aged 4–60 months in Isfahan, Iran. Int. J. Gen. Med. 2012;5:683‑7.
  14. Chiabi A. Growth, Morbidity and Neurological Outcome of a Cohort of Neonates in a Kangaroo Mother Care Program, in a Regional Hospital in Cameroon. J. Pediatr. Adv. Res. [Internet] 2022 [cité 2023 sept 9];1‑8. Available from: https://athenaeumpub.com/wp-content/uploads/Growth-Morbidity-and-Neurological-Outcome-of-a-Cohort-of-Neonates-in-a-Kangaroo-Mother-Care-Program-in-a-Regional-Hospital-in-Cameroon.pdf
  15. Ellison PH, Horn JL, Browning CA. Construction of an Infant Neurological International Battery (Infanib) for the assessment of neurological integrity in infancy. Phys. Ther. 1985;65:1326‑31.
  16. Charpak N, de la Hoz AM, Villegas J, Gil F. Discriminant ability of the Infant Neurological International Battery (INFANIB) as a screening tool for the neurological follow-up of high-risk infants in Colombia. Acta Paediatr. Oslo Nor. 1992 2016;105:e195-199.
  17. Guifo ON, Moudze-Kaptué B. P 18. STAKES OF A PILOT CENTER FOR THE DIFFUSION OF THE KANGAROO MOTHER CARE METHOD IN AFRICA: THE CASE OF THE LAQUINTINIE HOSPITAL IN DOUALA (CAMEROON).
  18. Liao W, Wen E yi, Li C, Chang Q, Lv K lin, Yang W, et al. Predicting neurodevelopmental outcomes for at-risk infants: reliability and predictive validity using a Chinese version of the INFANIB at 3, 7 and 10 months. BMC Pediatr. 2012;12:72.
  19. Charpak N, De La Hoz AM, Villegas J, Gil F. Discriminant ability of the Infant Neurological International Battery (INFANIB) as a screening tool for the neurological follow-up of high-risk infants in Colombia. Acta Paediatr. [Internet] 2016 [cité 2023 sept 7];105:e195‑9. Available from: https://onlinelibrary.wiley.com/doi/10.1111/apa.13377
  20. Soleimani F, Dadkhah A. Validity and reliability of Infant Neurological International Battery for detection of gross motor developmental delay in Iran. Child Care Health Dev. 2007;33:262‑5.
  21. Hee Chung E, Chou J, Brown KA. Neurodevelopmental outcomes of preterm infants: a recent literature review. Transl. Pediatr. 2020;9:S3‑8.
  22. Woythaler M. Neurodevelopmental outcomes of the late preterm infant. Semin. Fetal. Neonatal Med. 2019;24:54‑9.
  23. Demirci GM, Kittler PM, Phan HTT, Gordon AD, Flory MJ, Parab SM, et al. Predicting mental and psychomotor delay in very pre-term infants using machine learning. Pediatr. Res. 2023;
  24. Feng Y, Zhou H, Zhang Y, Perkins A, Wang Y, Sun J. Comparison in executive function in Chinese preterm and full-term infants at eight months. Front. Med. 2018;12:164‑73.
  25. Righetto Greco AL, Sato NT da S, Cazotti AM, Tudella E. Is Segmental Trunk Control Related to Gross Motor Performance in Healthy Preterm and Full-Term Infants? J. Mot. Behav. 2020;52:666‑75.
  26. Romeo DM, Ricci M, Picilli M, Foti B, Cordaro G, Mercuri E. Early Neurological Assessment and Long-Term Neuromotor Outcomes in Late Preterm Infants: A Critical Review. Med. Kaunas Lith. 2020;56:475.
  27. Jois RS. Understanding long-term neurodevelopmental outcomes of very and extremely preterm infants: A clinical review. Aust. J. Gen. Pract. 2019;48:26‑32.
  28. University Of Lagos, Onuegbu NF. Child Handling Cultural Practices For Neuromotor Development In Infants In A Cohort Of African Population: A Prospective Analytical Study. Neonatol. Clin. Pediatr. [Internet] 2020 [cité 2023 sept 11];7:1‑8. Available from: https://www.heraldopenaccess.us/openaccess/child-handling-cultural-practices-for-neuromotor-development-in-infants-in-a-cohort-of-african-population-a-prospective-analytical-study
  29. Lange RT. Inter-rater Reliability [Internet]. In: Kreutzer JS, DeLuca J, Caplan B, éditeurs. Encyclopedia of Clinical Neuropsychology. New York, NY: Springer; 2011 [cité 2023 sept 11]. page 1348‑1348.Available from: https://doi.org/10.1007/978-0-387-79948-3_1203
  30. Reddy DK, Pandey S. Kernicterus [Internet]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 [cité 2023 sept 12]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK559120/
  31. Maisels MJ, Watchko JF, Bhutani VK, Stevenson DK. An approach to the management of hyperbilirubinemia in the preterm infant less than 35 weeks of gestation. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2012;32:660‑4.
  32. Wusthoff CJ, Loe IM. Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes. Semin. Fetal. Neonatal Med. 2015;20:52‑7.
  33. Mwaniki MK, Atieno M, Lawn JE, Newton CRJC. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet Lond. Engl. 2012;379:445‑52.
  34. Aggarwal A, Mittal H, Patil R, Debnath S, Rai A. Clinical profile of children with developmental delay and microcephaly. J. Neurosci. Rural Pract. 2013;4:288‑91.
  35. Watemberg N, Silver S, Harel S, Lerman-Sagie T. Significance of microcephaly among children with developmental disabilities. J. Child Neurol. 2002;17:117‑22.
  36. Aagaard K, Bach CC, Henriksen TB, Larsen RT, Matthiesen NB. Head circumference at birth and childhood developmental disorders in a nationwide cohort in Denmark. Paediatr. Perinat. Epidemiol. 2018;32:458‑66.
  37. Bucher S, Nowak K, Otieno K, Tenge C, Marete I, Rutto F, et al. Birth weight and gestational age distributions in a rural Kenyan population. BMC Pediatr. 2023;23:112.
  38. Ribas SA, Paravidino VB, Soares FVM. Comparison of growth curves in very low birth weight preterm infants after hospital discharge. Eur. J. Pediatr. 2022;181:149‑57.
  39. Reddy KV, Sharma D, Vardhelli V, Bashir T, Deshbotla SK, Murki S. Comparison of Fenton 2013 growth curves and Intergrowth-21 growth standards to assess the incidence of intrauterine growth restriction and extrauterine growth restriction in preterm neonates ≤32 weeks. J. Matern.-Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 2021;34:2634‑41.
  40. Samarani M, Restom G, Mardini J, Abi Fares G, Hallit S, Fadous Khalife MC. Comparative study between Fenton and intergrowth 21 charts in a sample of Lebanese premature babies. BMC Pediatr. 2020;20:74.
  41. Linsell L, Malouf R, Morris J, Kurinczuk JJ, Marlow N. Risk Factor Models for Neurodevelopmental Outcomes in Children Born Very Preterm or With Very Low Birth Weight: A Systematic Review of Methodology and Reporting. Am. J. Epidemiol. 2017;185:601‑12.
  42. Chebet M, Musaba MW, Mukunya D, Makoko B, Napyo A, Nantale R, et al. High Burden of Neurodevelopmental Delay among Children Born to Women with Obstructed Labour in Eastern Uganda: A Cohort Study. Int. J. Environ. Res. Public. Health 2023;20:3470.
  43. Horridge K. SINDA: Standardized Infant NeuroDevelopmental Assessment An Instrument for Early Detection of Neurodevelopmental Disorders Edited by Mijna Hadders-Algra Uta Tacke Joachim Pietz Heike Philippi London: Mac Keith Press, 2022 £45.00 (Paperback), pp 200 ISBN: 9781911612612. Dev. Med. Child Neurol. 2022;64:924‑5.
  44. Marschik PB. ., Pokorny FB, Peharz R, Zhang D, O’Muircheartaigh J, Roeyers H, et al. A Novel Way to Measure and Predict Development: A Heuristic Approach to Facilitate the Early Detection of Neurodevelopmental Disorders. Curr. Neurol. Neurosci. Rep. 2017;17:43.

Most read articles by the same author(s)