Main Article Content
Abstract
Introduction. Cerclage is a simple osteosynthesis technique that has been widely used since the advent of surgical treatment of fractures. The aim of this study was to compare the outcome of use of the steel wire cerclage technique with nailing versus with screw plate in the management of non-comminutives diaphyseal spiroid fractures of the femur. Methodology. We conducted a retrospective study of the medical records of patients with spiral fractures of type A1 of the AO classification of femur in the orthopaedic surgery department of the Yaoundé Central Hospital, Cameroon. The duration of the study was 8 months from 25 November 2023 to 29 July 2024 Our data of interest were sociodemographic, clinical, postoperative evolution. The data were analyzed using R software. The non-parametric Mann-Whitney test, Pearson's and Fisher's independence tests were used for statistical analysis with significant p-value if p < 0.05. Results. A total of 33 patients were included in the study, 23 of whom were males (sex ratio=1.81). The mean age was 41±16 years. Two surgical techniques were compared: cerclage with centromedullary nail (in 75.8% of cases) and cerclage with screw plate (in 24.2%). Consolidation was achieved more quickly with cerclage on a centromedullary nail than with cerclage on a screw plate (p=0.018). All patients consolidated with a mean time of 2.79 months and extremes of 3 and 5 months. According to the lower limb functional score, 21.21% of patients had a very good functional outcome, 75.75% had a good outcome, and 3.03% had an average outcome. Overall, the majority of patients were satisfied with their functional outcome. Conclusion. This study demonstrated that cerclage with nailing of non-comminuted spiral diaphyseal fractures allows a significantly shorter time to consolidation than with a screw plate.
RÉSUMÉ
Introduction. Le cerclage est une technique d'ostéosynthèse simple qui est largement utilisée depuis l'avènement du traitement chirurgical des fractures. Cette étude visait à comparer le cerclage avec clou centromédullaire et avec plaque à vis pour les fractures spirales diaphysaires non comminutives du fémur.. Méthodologie. Nous avons mené une étude rétrospective des dossiers médicaux d'une population de 33 patients présentant des fractures spiralées de type A1 selon la classification AO du fémur. Cette étude a eu lieu sur une période de suivi minimale de 8 mois, du 25 novembre 2023 au 29 juillet 2024, au service de chirurgie orthopédique de l'Hôpital Central de Yaoundé, Cameroun. Nous avons collecté des données sociodémographiques, cliniques et sur l'évolution postopératoire. Les données ont été analysées à l'aide du logiciel R. Le test non paramétrique de Mann-Whitney, ainsi que les tests d'indépendance de Pearson et de Fisher ont été utilisés pour l'analyse statistique, avec une valeur p significative si p < 0,05. Résultats. Un total de 33 patients ont été inclus dans l'étude, dont 23 hommes, avec un sexe-ratio de 1,81. L'âge moyen était de 41±16 ans. Deux techniques chirurgicales ont été comparées : le cerclage avec clou centromédullaire (dans 75,8 % des cas) et le cerclage avec plaque à vis (dans 24,2 %). La consolidation a été obtenue plus rapidement avec le cerclage sur clou centromédullaire qu'avec le cerclage sur plaque à vis (p = 0,018). Tous les patients ont consolidé avec un temps moyen de 2,79 mois et des extrêmes de 3 et 5 mois. Selon le score fonctionnel du membre inférieur, 21,21 % des patients ont obtenu un excellent résultat fonctionnel, 75,75 % un bon résultat et 3,03 % un résultat moyen. La majorité des patients étaient satisfaits de leur résultat fonctionnel. Conclusion. Cette étude a démontré que le cerclage avec clou pour les fractures spiralées diaphysaires non comminutives permet un délai de consolidation significativement plus court que le cerclage avec plaque à vis.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
- 1. Bigham-Sadegh A, Oryan A. Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. Int Wound J. 2015;12(3):238–47.
- 2. Gueorguiev B, Moriarty FT, Stoddart M, Acklin YP, Richards RG, Whitehouse M. Principles of fractures. In: Apley & Solomon’s System of Orthopaedics and Trauma. 10th ed. CRC Press; 2017.
- 3. Singaram S, Naidoo M. The physical, psychological and social impact of long bone fractures on adults : a review. Afr J Prim Health Care Fam Med. 2019 Jan;11(1):1–9.
- 4. Lundin N, Huttunen TT, Enocson A, Marcano AI, Felländer-Tsai L, Berg HE. Epidemiology and mortality of pelvic and femur fractures—a nationwide register study of 417,840 fractures in Sweden across 16 years: diverging trends for potentially lethal fractures. Acta Orthop. 2021 May 4;92(3):323–8.
- 5. Garnavos C, Kanakaris NK, Lasanianos NG, Tzortzi P, West RM. New Classification System for Long-bone Fractures Supplementing the AO/OTA Classification. Orthopedics. 2012 May;35(5):e709–19.
- 6. Pengrung N, Sa-ngasoongsong P, Sabsuantang K, Thongchuea N, Warinsiriruk E. Effectiveness of laser welding in cerclage wiring fixation: a biomechanical study. Front Surg [Internet]. 2023 Sep 29 [cited 2024 Sep 25];10:1134986. Available from: https://www.frontiersin.org/articles/10.3389/fsurg.2023.1134986/full
- 7. Luís NM, Varatojo R. Radiological assessment of lower limb alignment. 2021 Jun 28 [cited 2024 Dec 7]; Available from: https://eor.bioscientifica.com/view/journals/eor/6/6/2058-5241.6.210015.xml
- 8. Lee YJ, Lim JR, Choi JH, Yoon TH, Choi YR, Chun YM. Comparing the Biomechanical Stability of Cerclage Cable with Plate Insert Versus Locking Screw in Periprosthetic Humeral Fracture. JBJS. 2024 May 1;106(9):817.
- 9. Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): Scale Development, Measurement Properties, and Clinical Application. Phys Ther. 1999 Apr 1;79(4):371–83.
- 10. Stratford PW, Hart DL, Binkley JM, Kennedy DM, Alcock GK, Hanna SE. Interpreting lower extremity functional status scores. Physiother Can. 2005;57(2):154–62.
- 11. Kumar G, Narayan B. The Biology of Fracture Healing in Long Bones. In: Banaszkiewicz PA, Kader DF, editors. Classic Papers in Orthopaedics [Internet]. London: Springer; 2014 [cited 2024 Dec 9]. p. 531–3. Available from: https://doi.org/10.1007/978-1-4471-5451-8_139
- 12. McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br. 1978 May 1;60-B(2):150–62.
- 13. Brighton CT, Hunt RM. Early histological and ultrastructural changes in medullary fracture callus. JBJS. 1991 Jul;73(6):832.
- 14. Borgeaud M, Cordey J, Leyvraz PE, Perren SM. Mechanical analysis of the bone to plate interface of the LC-DCP and of the PC-FIX on human femora. Injury. 2000 Sep;31 Suppl 3:C29-36.
- 15. Finkemeier CG, Schmidt AH, Kyle RF, Templeman DC, Varecka TF. A Prospective, Randomized Study of Intramedullary Nails Inserted With and Without Reaming for the Treatment of Open and Closed Fractures of the Tibial Shaft. J Orthop Trauma. 2000 Apr;14(3):187.
- 16. Meyrueis P, Cazenave A, Zimmermann R. Biomécanique de l’os. Application au traitement des fractures. EMC - Rhumatol-Orthopédie. 2004 Jan 1;1(1):64–93.
- 17. Kilinc BE, Oc Y, Kara A, Erturer RE. The effect of the cerclage wire in the treatment of subtrochanteric femur fracture with the long proximal femoral nail: A review of 52 cases. Int J Surg. 2018 Aug 1;56:250–5.
- 18. Xu BY, Yan S, Low LL, Vasanwala FF, Low SG. Predictors of poor functional outcomes and mortality in patients with hip fracture: a systematic review. BMC Musculoskelet Disord [Internet]. 2019 Dec [cited 2024 Sep 27];20(1):568. Available from: https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-019-2950-0.
References
1. Bigham-Sadegh A, Oryan A. Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. Int Wound J. 2015;12(3):238–47.
2. Gueorguiev B, Moriarty FT, Stoddart M, Acklin YP, Richards RG, Whitehouse M. Principles of fractures. In: Apley & Solomon’s System of Orthopaedics and Trauma. 10th ed. CRC Press; 2017.
3. Singaram S, Naidoo M. The physical, psychological and social impact of long bone fractures on adults : a review. Afr J Prim Health Care Fam Med. 2019 Jan;11(1):1–9.
4. Lundin N, Huttunen TT, Enocson A, Marcano AI, Felländer-Tsai L, Berg HE. Epidemiology and mortality of pelvic and femur fractures—a nationwide register study of 417,840 fractures in Sweden across 16 years: diverging trends for potentially lethal fractures. Acta Orthop. 2021 May 4;92(3):323–8.
5. Garnavos C, Kanakaris NK, Lasanianos NG, Tzortzi P, West RM. New Classification System for Long-bone Fractures Supplementing the AO/OTA Classification. Orthopedics. 2012 May;35(5):e709–19.
6. Pengrung N, Sa-ngasoongsong P, Sabsuantang K, Thongchuea N, Warinsiriruk E. Effectiveness of laser welding in cerclage wiring fixation: a biomechanical study. Front Surg [Internet]. 2023 Sep 29 [cited 2024 Sep 25];10:1134986. Available from: https://www.frontiersin.org/articles/10.3389/fsurg.2023.1134986/full
7. Luís NM, Varatojo R. Radiological assessment of lower limb alignment. 2021 Jun 28 [cited 2024 Dec 7]; Available from: https://eor.bioscientifica.com/view/journals/eor/6/6/2058-5241.6.210015.xml
8. Lee YJ, Lim JR, Choi JH, Yoon TH, Choi YR, Chun YM. Comparing the Biomechanical Stability of Cerclage Cable with Plate Insert Versus Locking Screw in Periprosthetic Humeral Fracture. JBJS. 2024 May 1;106(9):817.
9. Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): Scale Development, Measurement Properties, and Clinical Application. Phys Ther. 1999 Apr 1;79(4):371–83.
10. Stratford PW, Hart DL, Binkley JM, Kennedy DM, Alcock GK, Hanna SE. Interpreting lower extremity functional status scores. Physiother Can. 2005;57(2):154–62.
11. Kumar G, Narayan B. The Biology of Fracture Healing in Long Bones. In: Banaszkiewicz PA, Kader DF, editors. Classic Papers in Orthopaedics [Internet]. London: Springer; 2014 [cited 2024 Dec 9]. p. 531–3. Available from: https://doi.org/10.1007/978-1-4471-5451-8_139
12. McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br. 1978 May 1;60-B(2):150–62.
13. Brighton CT, Hunt RM. Early histological and ultrastructural changes in medullary fracture callus. JBJS. 1991 Jul;73(6):832.
14. Borgeaud M, Cordey J, Leyvraz PE, Perren SM. Mechanical analysis of the bone to plate interface of the LC-DCP and of the PC-FIX on human femora. Injury. 2000 Sep;31 Suppl 3:C29-36.
15. Finkemeier CG, Schmidt AH, Kyle RF, Templeman DC, Varecka TF. A Prospective, Randomized Study of Intramedullary Nails Inserted With and Without Reaming for the Treatment of Open and Closed Fractures of the Tibial Shaft. J Orthop Trauma. 2000 Apr;14(3):187.
16. Meyrueis P, Cazenave A, Zimmermann R. Biomécanique de l’os. Application au traitement des fractures. EMC - Rhumatol-Orthopédie. 2004 Jan 1;1(1):64–93.
17. Kilinc BE, Oc Y, Kara A, Erturer RE. The effect of the cerclage wire in the treatment of subtrochanteric femur fracture with the long proximal femoral nail: A review of 52 cases. Int J Surg. 2018 Aug 1;56:250–5.
18. Xu BY, Yan S, Low LL, Vasanwala FF, Low SG. Predictors of poor functional outcomes and mortality in patients with hip fracture: a systematic review. BMC Musculoskelet Disord [Internet]. 2019 Dec [cited 2024 Sep 27];20(1):568. Available from: https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-019-2950-0.